2.3 Extensions of the Classical Models

- Combination of
 - Boolean model
 - vector model
 - indexing with and without preprocessing

- Extended index with additional information like
 - document format (.doc, .pdf, …)
 - language

- Using information about links in hypertext
 - link structure
 - anchor text

Boolean Operators in the Vector Model

Many search engines allow queries with Boolean operators

\[(\text{vehicle OR car}) \text{ AND accident}\]

Retrieval:

- Boolean operators are used to select relevant documents
 - in the example, only documents containing „accident“ and either „vehicle“ or „car“ are considered relevant
- ranking of the relevant documents is based on vector model
 - idf-tf weighting
 - cosine ranking formula
Using Link Information in Hypertext

- Ranking: link structure is used to calculate a quality ranking for each web page
 - PageRank
 - HITS – Hypertext Induced Topic Selection (Authority and Hub)
 - Hilltop
- Indexing: text of a link (anchor text) is associated both
 - with the page the link is on and
 - with the page the link points to

The PageRank Calculation

- PageRank has been developed by Sergey Brin and Lawrence Page at Stanford University and published in 1998\(^1\)
- PageRank uses the link structure of web pages
- Original version of PageRank calculation:

\[
PR(A) = (1-d) + d \left(\frac{PR(T_1)}{C(T_1)} + \ldots + \frac{PR(T_n)}{C(T_n)} \right)
\]

with

- \(PR(A)\) being the PageRank of page A,
- \(PR(T)\) being the PageRank of pages \(T\) that contain a link to page A
- \(C(T)\) being the number of links going out of page \(T\)
- \(d\) being a damping factor with \(0 \leq d \leq 1\)

The PageRank Calculation - Explanation

\[
PR(A) = (1-d) + d \left(\frac{PR(T_1)}{C(T_1)} + \ldots + \frac{PR(T_n)}{C(T_n)} \right)
\]

- The PageRank of page A is recursively defined by the PageRanks of those pages which link to page A.
- The PageRank of a page \(T_i\) is always weighted by the number of outbound links \(C(T_i)\) on page \(T_i\). This means that the more outbound links a page \(T_i\) has, the less will page A benefit from a link to it on page \(T_i\).
- The weighted PageRank of pages \(T_i\) is then added up. The outcome of this is that an additional inbound link for page A will always increase page A's PageRank.
- Finally, the sum of the weighted PageRanks of all pages \(T_i\) is multiplied with a damping factor \(d\) which can be set between 0 and 1.

Source: http://pr.efactory.de/e-pagerank-algorithm.shtml

Damping Factor and the Random Surfer Model

- The PageRank algorithm and the damping factor are motivated by the model of a random surfer. The random surfer finds a page A by:
 - following a link from a page \(T_i\) to page A or
 - by random choice of a web page (e.g. typing the URL).
- The probability that the random surfer clicks on a particular link is given by the number of links on that page: If a page \(T_i\) contains \(C(T_i)\) links, the probability for each links is \(1/ C(T_i)\).
- The justification of the damping factor is that the surfer does not click on an infinite number of links, but gets bored sometimes and jumps to another page at random.
 - \(d\) is the probability for the random surfer not stopping to click on links – this is way the sum of PageRanks is multiplied by \(d\).
 - \((1-d)\) is the probability that the surfer jumps to another page at random after he stopped clicking links.

Regardless of inbound links, the probability for the random surfer jumping to a page is always \((1-d)\), so a page has always a minimum PageRank.

(According to Brin and Page \(d = 0.85\) is a good value)

Source: http://pr.efactory.de/e-pagerank-algorithm.shtml
Calculation of the PageRank - Example

- We regard a small web consisting of only three pages A, B and C and the links structure shown in the figure.
- To keep the calculation simple d is set to 0.5.
- These are the equation for the PageRank calculation:

 \[\begin{align*}
 PR(A) &= 0.5 + 0.5 \times PR(C) \\
 PR(B) &= 0.5 + 0.5 \times \left(PR(A) / 2 \right) \\
 PR(C) &= 0.5 + 0.5 \times \left(PR(A) / 2 + PR(B) \right)
 \end{align*} \]

- Solving these equations we get the following PageRank values for the single pages:

 \[\begin{align*}
 PR(A) &= 14/13 = 1.07692308 \\
 PR(B) &= 10/13 = 0.76923077 \\
 PR(C) &= 15/13 = 1.15384615
 \end{align*} \]

Quelle: http://pr.efactory.de/e-pagerank-algorithmus.shtml

Iterative Calculation of the PageRank - Example

Because of the size of the actual web, the Google search engine uses an approximative, iterative computation of PageRank values:

- each page is assigned an initial starting value.
- the PageRanks of all pages are then calculated in several computation cycles.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>PR(A)</th>
<th>PR(B)</th>
<th>PR(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1.0625</td>
<td>0.75</td>
<td>1.125</td>
</tr>
<tr>
<td>2</td>
<td>1.07421875</td>
<td>0.76855469</td>
<td>1.1484375</td>
</tr>
<tr>
<td>3</td>
<td>1.07641602</td>
<td>0.76910400</td>
<td>1.1535601</td>
</tr>
<tr>
<td>4</td>
<td>1.07682800</td>
<td>0.76920700</td>
<td>1.15381050</td>
</tr>
<tr>
<td>5</td>
<td>1.07690525</td>
<td>0.76922631</td>
<td>1.15383947</td>
</tr>
<tr>
<td>6</td>
<td>1.07691973</td>
<td>0.76922993</td>
<td>1.15384490</td>
</tr>
<tr>
<td>7</td>
<td>1.07692245</td>
<td>0.76923061</td>
<td>1.15384592</td>
</tr>
<tr>
<td>8</td>
<td>1.07692296</td>
<td>0.76923074</td>
<td>1.15384611</td>
</tr>
<tr>
<td>9</td>
<td>1.07692305</td>
<td>0.76923076</td>
<td>1.15384615</td>
</tr>
<tr>
<td>10</td>
<td>1.07692307</td>
<td>0.76923077</td>
<td>1.15384615</td>
</tr>
<tr>
<td>11</td>
<td>1.07692308</td>
<td>0.76923077</td>
<td>1.15384615</td>
</tr>
<tr>
<td>12</td>
<td>1.07692308</td>
<td>0.76923077</td>
<td>1.15384615</td>
</tr>
</tbody>
</table>

According to Lawrence Page and Sergey Brin, about 100 iterations are necessary to get a good approximation of the PageRank values of the whole web.

Quelle: http://pr.efactory.de/d-pagerank-algorithmus.shtml
Alternative Link Analysis Algorithms (I): HITS

- Hypertext-Induced Topic Selection (HITS) is a link analysis algorithm proposed by J. Kleinberg 1999
- HITS rates Web pages for their authority and hub values:
 - The authority value estimates the value of the content of the page; a good authority is a page that is pointed to by many good hubs
 - the hub value estimates the value of its links to other pages; a good hub is a page that points to many good authorities (examples of hubs are good link collections);
- Every page i is assigned a hub weight \(h_i \) and an Authority weight \(a_i \):
 \[
 h_i = \delta \sum_{j=1}^{N} A_{ij} a_j \\
 a_i = \lambda \sum_{k=1}^{N} A_{ik} h_k
 \]

Hypertext-Induced Topic Selection (HITS) is a link analysis algorithm proposed by J. Kleinberg 1999.

Alternative Link Analysis Algorithms (II): Hilltop

- The Hilltop-Algorithm\(^1\) rates documents based on their incoming links from so-called expert pages
 - Expert pages are defined as pages that are about a topic and have links to many non-affiliated pages on that topic.
 - Pages are defined as non-affiliated if they are from authors of non-affiliated organisations.
 - Websites which have backlinks from many of the best expert pages are authorities and are ranked high.
- A good directory page is an example of an expert page (cp. hubs).
- Determination of expert pages is a central point of the hilltop algorithm.

\(^1\)The Hilltop-Algorithmus was developed by Bharat und Mihaila an publishes in 1999: Krishna Bharat, George A. Mihaila: Hilltop: A Search Engine based on Expert Documents. In 2003 Google bought the patent of the algorithm (see also http://pagerank.suchmaschinen-doktor.de/hilltop.html)
Anchor-Text

- The Google search engine uses the text of links twice
 - First, the text of a link is associated with the page that the link is on,
 - In addition, it is associated with the page the link points to.

- Advantages:
 - Anchors provide additional description of a web pages – from a user's point of view
 - Documents without text can be indexed, such as images, programs, and databases.

- Disadvantage:
 - Search results can be manipulated (cf. Google Bombing¹)

A Google bomb influences the ranking of the search engine. It is created if a large number of sites link to the page with anchor text that often has humorous, political or defamatory statements. In the meanwhile, Google bombs are defused by Google.

Natural Language Queries

```
- i need information about accidents with cars and other vehicles
```

is equivalent to

```
- information accident car vehicle
```

- Natural language queries are treated as any other query
 - Stop word elimination
 - Stemming

 but no interpretation of the meaning of the query
Searching Similar Documents

Is it often difficult to express the information need as a query.

- An alternative search method can be to search for similar documents to a given document \(d \).

Finding Similar Documents – Principle and Example

Example:
Find the most similar documents to \(d_1 \)

<table>
<thead>
<tr>
<th>IDF</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accident</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>car</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>cause</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>crowd</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>die</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>drive</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>four</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>heavy</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>injur</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>more</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>morning</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>people</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>quarter</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>register</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>truck</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>trucker</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>vehicle</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>vienna</td>
<td>0.33</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>yesterday</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Principle:
- Use a given document \(d \) as a query.
- Compare all document \(d \) with \(d \).

Example (scalar product):

\[
\text{IDF} \cdot d_1 \cdot d_2 = 0.83 \\
\text{IDF} \cdot d_1 \cdot d_3 = 2.33
\]

- The approach is the same as for \(a \):
 - same index
 - same ranking function
The Vector Space Model

- The vector space model ...
 … is relatively simple and clear,
 … is efficient,
 … ranks documents,
 … can be applied for any collection of documents

- The model has many heuristic components of parameters, e.g.
 ◆ determination of index terms
 ◆ calculation of tf and idf
 ◆ ranking function

- The best parameter setting depends on the document collection