
Change Management in Semantic Business Processes Modeling

 Uttam Kumar Tripathi Knut Hinkelmann
Department of Computer Science & Engg. University of Applied Sciences

Indian Institute of Technology Kanpur Northwestern Switzerland
 Kanpur-208016 India 4600 Olten, Switzerland

 uttam@cse.iitk.ac.in knut.hinkelmann@fhnw.ch

Abstract
Keeping IT align with business is an important task in an
agile business environment which is related to change
management in software development. We present a
methodology and system for changing SOA-based
business process implementation. We distinguish two
layers: At the design layer processes are modeled in the
ontology-based semantic markup language for web
services OWL-S. For execution the processes are
translated into BPEL. At the core of our system is a
central change management component. We have
implemented some generic transformation functions that
can be composed to realize any configuration and
reconfiguration of process modeled in OWL-S. Finally,
we demonstrate our approach with an example e-
government.

Keywords
Service Oriented Architecture, semantic language,
Business processes, Web Services, OWL-S, BPEL.

1. Introduction
In a business environment changes are an ever occurring
phenomenon. For example, agility of the market, new
client needs, or organizational restructuring (e.g. because
of mergers, acquisitions or outsourcing) affect the way of
doing business and hence do influence the design of
business processes. Adaptability to changes and speed of
innovation are a prerequisite for business process
management. Hence, a business process management
approach should be able to accommodate these changes in
the model as and when they occur.

Business processes are supported by IT. In case of
changes in business it must be ensured that IT is still
aligned with business.

Business

Information
Technology

Business

Information
Technology

Fig 1. Aligning IT with Business

In recent years there is a trend towards service-

oriented architectures for implementing business
software. Instead of having a monolithic, integrated
software system, modern business software is composed
of reusable software components. An example of this is
SAP’s Netweaver technology [2,6].

A service-oriented architecture, however, is not
enough to cope with the agility of business. Business
semantics is required to (1) efficiently identify the
components that have to be adapted because of changes in
the business processes and (2) to ensure consistency of
the changes.

In this work we present a methodology for aligning IT
with a business process model by automatically adapting
the corresponding execution environment in case a
change in the business process occurs.

In accordance with most approaches for business
process management we distinguish design and
implementation of business processes:
 On design level we not only model the business

process but also define the semantics of the
enterprise services that are implemented on the
implementation layer. Thus, we need an expressive
modeling language with a well-defined semantics.
We use OWL-S [9], OWL-based web service
ontology.

 As a standard for implementing a service-oriented
architecture we rely on web services. To combine
web services to processes we use the business
process execution language for web services BPEL
[1,4] which makes it possible to define also inter-
organisational services.

OWL-S

BPEL
(web services)

implementation
layer

design
layerOWL-S

BPEL
(web services)

implementation
layer

design
layer

Fig 2. Process languages for design and execution

A major reason for choosing OWL-S as the process
description language was that OWL-S has a mapping to
Web Service Description Language WSDL [9], which are
building artifacts in the implementation of process models
via BPEL. This existence of grounding of service for
concrete realization was a major benefit in using OWL-S.

In section 2 we briefly discuss some related work done
in this area of change management for software and
processes. In section 3 we describe our approach which
involves the development of a central change
management system and in the next section to it we
describe in detail our Change Management System. In
section 5 we present some of the generic process
transformation functions that we have implemented to
support the changes on the process specified in OWL-S.
Then we discuss an example of process flow for
administrative tasks involved in vehicle registration in a
city and see how changes in the process model can be
incorporated very efficiently by our suggested schema.

2. Related Works

Change and change handling has been an area of study in
the domain of information technology for quite sometime
now [8]. As mentioned in Carnegie Mellon University’s
Software Engineering Institute (SEI) Software Capability
Maturity Model1 (SW-CMM) [3] Software Configuration
(Change) Management involves identifying the
configuration of the software at given points in time,
systematically controlling changes to the configuration,
and maintaining the integrity and traceability of the
configuration throughout the software life cycle. The
work products placed under software configuration
management include the software products that are
delivered to the customer (e.g., the software requirements
document and the code) and the items that are identified
with or required to create these software products. SPICE
(Software Process Improvement and Capability
Determination) or ISO 15504 [10] is a model for the
assessment of business process using a capability
determination similar to CMMI.

Workflow management systems are a special kind of
middleware integrating applications involving systems
and people as participants. Implementing processes using
a SOA approach can be regarded as a distributed system.
Our approach of issuing change transactions resulting in
atomic changes in the business process is motivated from
the approach followed in [7], where an efficient way of
handling changes in distributed computing systems is
described.

Changes in process models can be divided into two
broad categories depending on the time period over which
a change can be expected to occur.

1 http://www.sei.cmu.edu/cmmi/cmmi.html

 Short termed changes actually occur in scenarios
where we in principle know the various kinds of
changes (alternative paths) possible and hence our
process model has to adapt to one of them at runtime.
In [5] a methodology is described that uses business
rules to cope with short-term process adaptivity.

 Long-term changes result in the need for the overall
modification and evolution of processes in order to
reflect the changes that have occurred. Some new
activities might come-up in the business process
model or some old ones might need to be removed,
new conditional branches might come-up or some
existing ones may get obsolete. A business process
management approach should be capable to
incorporating all these changes and should remain
functional even after these changes have occurred.

Long-term changes are the focus of the work we present
in this paper.

3. Our Approach

As we figured out during our study that there can be
many reasons for changes of business process models,
e.g.

 change of enterprise goals
 client needs
 technological innovations
 gratuitously long running times
 inefficient interfaces between organizational

units
In the following subsections we describe a change
management system to make sure that the implementation
of a business process remains operational after facing
these changes.

3.1 Components of the Change Management
System
In our approach we have a central change management
system which is responsible for managing and
incorporating changes which are occurring in the business
environment. This CMS (change management system)
can be set into operation by two different triggers
resulting in a sequence of change transactions being
issued for the business process model. Once the changes
have taken place on the process model they are mapped to
the process existing in the execution environment.

Fig. 3 outlines the change management schema which
consists of the following major building blocks:

 automatic and manual triggers
 change management system
 business process models (specified in OWL-S)
 execution environment (processes implemented

in BPEL, as web services)

Change Management
System

process indicators human interface
automatic

trigger
human
trigger

change
transactions

BPEL code
(web service orchestration)

business
process
modell

execution
environment

Change Management
System

process indicators human interface
automatic

trigger
human
trigger

change
transactions

BPEL code
(web service orchestration)

business
process
modell

execution
environment

Fig. 3 The Change Management Schema

Our approach for change management is applicable for

processes that are implemented in service oriented
architecture. The changes managed by our approach only
concern the process control structure while it does not
affect the implementation of the (web) services
themselves. This is in accordance with the general idea of
SOA where the real implementation of the services is
transparent for the application. Therefore the Web
Service needed by BPEL will either pre-exist and our
BPEL process will simply use it or will be created at the
implementation step.

3.2 Business Process Models
In our approach business processes are modeled using
OWL-S, the semantic markup language for web services.
These business models are modeled to be as
comprehensive and clearly outline all the details that are
associated with the process model. The business process
models are then implemented in BPEL with the activities
being implemented as web-services.

As OWL-S provides grounding to WSDL (Web
Service Definition Language) OWL-S emerged as default
choice for our realization of process models. Another
option would have been WSMO (Web service modeling
ontology), but since grounding web services to an
invocation mechanism has not yet been defined in
WSMO, we decided to go with OWL-S.

3.3 Two-Step Change Procedure

Instead of directly modifying the BPEL code, however,
we identify the changes on the business level which is
modeled in a semantically rich ontology language OWL-

S. It is obvious that once the process model gets changed
the corresponding BPEL implementation needs to be
redone, too. The BPEL code which will be used in the
execution environment is then generated out of this
modified OWL-S code (see Fig. 4).

Fig. 4 Showing how an application get updated with
change transaction acting on OWL-S code and BPEL
code getting changed virtually

This approach is useful because for defining a process
structure the details required in the OWL-S definition are
sufficient. Most of the other information that is needed in
BPEL is mainly implementation specific (like port
information etc.). It is easy to see that by any OWL-S
model can be extended in order to declaratively represent
this implementation-specific information as well. Hence
by making our atomic change transaction for OWL-S
only, we have reduced the complexity.

In the following we concentrate on the modification of
the OWL-S process, while the details of how to translate
an OWL-S process to BPEL is not covered in this paper.

4. Change Management Model

As stated in the previous section in our approach we
handle changes by the help of a Change management
system and hence we name this solution model as change
management model.

4.1 Change Triggers
Triggers are handles through which the change
management system can be activated. We have foreseen
two types of triggers depending on how the required
change is invoked. Changes can be triggered

 automatically based on

OWL-S code
(Version n)

OWL-S code
(Version n)

BPEL Code
(Version n)

BPEL Code
(Version n+1)

Version-n of Application Version-n+1 of Application

 OWL-S code

Updated to
reflect the
changes Generating

BPEL code
from OWL-S
by translator

Generating
BPEL code
from OWL-S
by translator

BPEL
Updated
Virtually

o Measurement of key performance indicators or
quality indicators, e.g. runtime, idle time or
process costs.

o Mining user behavior identifying reasons for
inefficiencies.

 manually by the administrator because of

o Technology changes
o Changes in the environment
o Change/shift in the goals of the company

For building up the invocation system certain mapping

must exist between indices and artifacts of the model,
these are figured out well in advance and it remains a task
of analysts. Manual invocation is provided to deal with
the worst case scenario of “unforeseen” cases.

Currently we have completed the implementation
invoking the change management system using the
manual trigger only. The task of figuring out the quality
indicators and creating the automatic invocation system
based on that is a part of future work.

4.2 Change Management System

The change management system is the most important
component of the overall model as once it gets invoked
through any one of the triggers it issues change
transaction which will be perform the desired changes in
the Business process model. The change transactions that
are issued are actually certain generic actions that can be
used for configuration and reconfiguration of the process
models.

Changes in a business process model might result in
(1) Some activities of the business process getting

obsolete and hence need to be removed from the
process model or

(2) New activities that have to be included in the
process model or

(3) Modifying the data/control flow sequence of the
process.

We implemented seven generic functions to cope with

these changes:
CreateProcess generates a new process
DeleteProcess deletes the corresponding process
PutInSequence defines a sequence control construct

between two services; the IDs of these processes
are also given as argument of the function.

RemoveFromSequence deletes a process from a given
sequence.

Apart from this we have implemented generic actions for
conditional operators (If then Else, Split, Repeat Until)

On invocation a generic function results in a sequence
of changes that get performed in the corresponding OWL-

S code specifying the process model. We have defined
two sets of generic functions in our approach one is used
for configuration (creating the process model for the first
time) and then another set for reconfiguration which
along with the first set is used for managing the changes
happening. We provide a detailed description of these
generic functions and how they affect an existing OWL-S
process description later on in this paper.

5. Generic transformation functions for
(re)configuration of process models

For configuration of the process models at the time of
their first creation and for reconfiguration at any later
point in time we have defined a set of minimal generic
functions. They are these functions which can be
combined to perform any complex (re-)configuration
action. The atomic actions adopted in our approach are
such that a combination of them can be used to portray
any possible change that can occur to a Business process
model.

Following are the set of functions that will be used for
configuration of the business process model (first
creation).

 CreateProcess: This is used for creating a new

OWL-S process. Our create action supports the
passing of following information in order to it to be
able to make a new process.

o Process ID
o Input ID, ParameterType (one or more than

one)
o Preconditions
o Effect ID
o Conditional Output ID

All of this information will need to be passed over in
the change transaction that will be issued from the
change management system. Based on this
information a code segment similar to the following
will get generated in the OWL-S process description
file.

 PutInSequence: This is the operation that will be
used for connecting two services in a process model.
Since in OWL-S the flow in logically stored as a
sequence hence we use this sequence structure only
to implement our generic action. Along with
putInSequence we will be passing following
parameters.

o Process to be added before or after the existing
process(0 or 1)

o Sequence ID

o Process existing in the sequence to which we
need to concatenate a new process

o Process to be added

 Split and split+join: For split operation in OWL-S a
processComponentBag is created and this process
bas is associated with the particular split process.
Hence the processes of the bas start getting executed
concurrently when the split operation is called. In our
control transaction of split we need to specify the
splitID and the services which are needed to be
contained in the processComponentBag of that split
operation.

In OWL-S a join can exist only after a split has
already occurred. This results in the process
undergoing concurrent execution with barrier
synchronization. Note that there can be scenario of
split all and join some sub-bag.

 If-Then-Else: For including the control constructs
which will result in generating a scenario of If-Then-
Else for our business process model we need to pass
the following information along with the If-Then-
Else transaction.

o If condition
o Then sequence (sequence of processes that will

be executed when if condition is true)
o Else sequence (sequence of processes that will

be executed when if condition is false)

 RepeatUntil: For implementing RepeatUntil we

need to pass on the
o Condition
o Process sequence to be executed while

condition is true

Note that for every conditional operator their is a unique
ID associated, hence if one invokes conditional action
with a ID which already exists in the process model, then
simply the existing description is overwritten with the
new one, thereby accommodating “partial changes” of
existing conditional execution description.

For reconfiguration i.e. incorporating a change at a later
point in time we will need two new generic actions apart
from all those mentioned above.

 DeleteProcess: This is a generic action used for

deleting a service from the process model. For
invoking this generic action one needs to pass over

o Process ID
And the process description is removed from the
model.

 RemoveFromSequence: For modifying the

sequence flow by removing the process which is not
needed anymore we use this generic action. As an
argument for this action we provide

o Sequence ID
o Process ID of the process to be

removed

6. Example using “Vehicle Registration”
Case:

For understanding the change management schema that
we have suggested let us consider an example scenario.
Vehicle registration and monitoring in large cities is a job
which requires lots of office and paper work. Let us
consider the case of vehicle registration process at the
RTO (Road Tax Office) in the city of Kanpur. Kanpur is
an Industrial town located in the Northern India with an
estimated population of 4.1 million people. Because of
the high industrial activities going on in the city the traffic
in the city is immense, including both motorized as well
as un-motorized vehicles. As per the RTO policy of the
city every motorized vehicle in the city needs to be
registered with the RTO office and needs to pay some tax,
which is used to build new roads and highways in and
around the city. However, not all kinds of vehicles are
allowed to be registered in the city as Kanpur faces very
serious problem of traffic congestion because of very
high density of vehicles operating in the city. Hence very
heavy vehicles are denied registration and permission to
operate in the city. For this purpose the RTO office uses a
list which pre-exists in its database, and which provides a
guideline of which kind of vehicle is allowable in the city.
The overall process of vehicle registration is shown
below in Fig. 5.

Fig. 5 Vehicle Registration process flow.

The above process can be described as an OWL-S
process as follows:

<process:CompositeProcess rdf:ID="Vehicle_Registration">

Test of Vehicle
in Allowed list

 Web Form

Perform
Registration

 <process:composedOf>
 <process:Sequence>
 <process:components rdf:parseType="Collection">
 <process:AtomicProcess rdf:about="#Test_IF_InAllowedList"/>
 <process:AtomicProcess rdf:about="#PerformRegistration"/>
 </process:components>
 </process:Sequence>
 </process:composedOf>
</process:CompositeProcess>

<process:AtomicProcess rdf:ID=" Test_IF_InAllowedList ">
 <process:hasInput rdf:resource="#PersonName_In"/>
 <process:hasInput rdf:resource="#PersonAddress_In"/>
 <process:hasInput rdf:resource="#VehicleModel_In"/>
 <process:hasInput rdf:resource="#ChassisNumber_In"/>
 <process:hasInput rdf:resource="#DateOfPurchase_In"/>
 <process:hasOutput rdf:resource="#VehcileAllowed_Out"/>
</process:AtomicProcess>

<process:Input rdf:ID=" PersonName_In ">
 <process:parameterType rdf:resource="&concepts;#Name"/>
</process:Input>

<process:Input rdf:ID=" PersonAddress_In ">
 <process:parameterType rdf:resource="&concepts;#Address"/>
</process:Input>

<process:Input rdf:ID=" VehicleModel_In ">
<process:parameterType rdf:resource="&concepts#VehicleModel"/>
</process:Input>

<process:Input rdf:ID=" ChassisNumber_In ">
 <process:parameterType rdf:resource="&concepts#ChasisNumr"/>
</process:Input>

<process:Input rdf:ID=" DateOfPurchase_In ">
 <process:parameterType rdf:resource="&concepts;#Date"/>
</process:Input>

<process:UnConditionalEffect rdf:ID=" VehcileAllowed_Out ">
 <process:ceEffect rdf:resource="&concepts;# VehcileAllowed"/>
</process:UnConditionalEffect>

 <process:AtomicProcess rdf:ID=" Perform_Registration ">
 <process:hasInput rdf:resource="#VehicleAllowed_In"/>
 <process:hasOutput rdf:resource="#PayableTax_Out"/>
</process:AtomicProcess>

<process:Input rdf:ID=" VehicleAllowed_In ">
 process:parameterType rdf:resource="&concepts# VehcileAllwd "/>
</process:Input>

<process:UnConditionalEffect rdf:ID=" PayableTax_Out ">
 <process:ceEffect rdf:resource="&concepts;# PayableTax"/>
</process:UnConditionalEffect>

The first element represents the overall process structure.
The process has ID “Vehicle_Registration”. It is
composed of a sequence consisting of two atomics
processes “Test_II_InAllowedList” and
“PerformRegistration”. These atomic processes are then
described with their input and output data (see. Fig. 5).

Let us assume that there is a change in registration
policies: It was realized by the pollution control board of
India that Kanpur is ranking very high in terms of air
pollution. The large number of motorized vehicles
operating in the city was identified as a major source for
that. The RTO in a bid to lower the pollution being
caused by the vehicles introduced an incentive based
schema in which if a vehicle is producing the pollutants

which are within the acceptable limits then the owner of
that vehicle needs to pay taxes at reduced rates. The new
process should look as shown in Fig. 6:

Fig. 6 Vehicle Registration process flow after
introduction of new process

As is clear from the process diagram this change

requires a new atomic process to be added in the flow.
Rest of the process remains the same. In order to
incorporate this change with the help of the generic
functions described in section 5, we will need make a call
of CreateProcess followed by a PutInSequence. This will
result in creating a new process for checking for the “No
pollution certificate” and then putting that process in the
sequence just before perform registration.
In this case we will invoke our change management
system and execute a CreateProcess call followed by a
PutInSequence call. For create process we will specify the
Process ID and the corresponding input/output then for
the PutInSequence action we will specify the Process ID,
the sequence to be added to, 0/1 (for before or after) and
the existing service to which we need to concatenate,
these sequence of atomic actions will result in modifying
the semantic process description that existed earlier and
hence results in generating the new process file.

Test of Vehicle
in Allowed list

 Web Form

Perform
Registration

Set Reduced Tax if
Vehicle has

“No Pollution
Certificate”

Fig 7. CMS (change Management System) executing the
create process action.

Fig 8. CMS executing the PutInSequence action.

After the changes are performed the new process file
looks like:

<process:CompositeProcess rdf:ID="Vehicle_Registration">
 <process:composedOf>
 <process:Sequence>
 <process:components rdf:parseType="Collection">
 <process:AtomicProcess rdf:about="#Test_IF_InAllowedList"/>
 <process:AtomicProcess rdf:about="#SetReducedTax"/>
 <process:AtomicProcess rdf:about="#PerformRegistration"/>
 </process:components>
 </process:Sequence>
 </process:composedOf>
</process:CompositeProcess>

<process:AtomicProcess rdf:ID=" Test_IF_InAllowedList ">
 <process:hasInput rdf:resource="#PersonName_In"/>
 <process:hasInput rdf:resource="#PersonAddress_In"/>
 <process:hasInput rdf:resource="#VehicleModel_In"/>
 <process:hasInput rdf:resource="#ChassisNumber_In"/>
 <process:hasInput rdf:resource="#DateOfPurchase_In"/>
 <process:hasOutput rdf:resource="#VehcileAllowed_Out"/>
</process:AtomicProcess>

<process:Input rdf:ID=" PersonName_In ">
 <process:parameterType rdf:resource="&concepts;#Name"/>
</process:Input>

<process:Input rdf:ID=" PersonAddress_In ">
 <process:parameterType rdf:resource="&concepts;#Address"/>
</process:Input>

<process:Input rdf:ID=" VehicleModel_In ">
<process:parameterType rdf:resource="&concepts#VehicleModel"/>
</process:Input>

<process:Input rdf:ID=" ChassisNumber_In ">
 <process:parameterType rdf:resource="&concepts;#ChassisNum"/>
</process:Input>

<process:Input rdf:ID=" DateOfPurchase_In ">
 <process:parameterType rdf:resource="&concepts;#Date"/>
</process:Input>

<process:UnConditionalEffect rdf:ID=" VehcileAllowed_Out ">
 <process:ceEffect rdf:resource="&concepts;# VehcileAllowed"/>
</process:UnConditionalEffect>

<process:AtomicProcess rdf:ID=" Set_Reduced_Tax ">
 <process:hasInput rdf:resource="#HoldsNoPollutionCertificate_In"/>
 <process:hasOutput rdf:resource="#TaxesReduced_Out"/>
</process:AtomicProcess>

<process:Input rdf:ID=" HoldsNoPollutionCertificate_In ">
 <process:parameterType rdf:resource="&concepts;#HoldsNoPollutionCerti"/>
</process:Input>

<process:UnConditionalEffect rdf:ID=" TaxesReduced_Out ">
 <process:ceEffect rdf:resource="&concepts;#TaxesReduced"/>
</process:UnConditionalEffect>

<process:AtomicProcess rdf:ID=" Perform_Registration ">
 <process:hasInput rdf:resource="#VehicleAllowed_In"/>
 <process:hasOutput rdf:resource="#PayableTax_Out"/>
</process:AtomicProcess>

<process:Input rdf:ID=" VehicleAllowed_In ">
<process:parameterType rdf:resource="&concepts# VehcileAllwd
"/>
</process:Input>

<process:UnConditionalEffect rdf:ID=" PayableTax_Out ">
 <process:ceEffect rdf:resource="&concepts;# PayableTax"/>
</process:UnConditionalEffect>

Once the changes are done at the OWL-S level they are
further mapped at the execution level of BPEL. In
addition, a new Web Service for setting the reduced tax
must be available that is invoked by the BPEL process.
Once the translation of the process into BPEL is
completed the Business process will again be ready and
available for execution and hence serving the client
requests. In this way, our change management system is
able to adapt seamlessly to a change in government
policy. Therefore the translation into the BPEL phase is

also an extremely important element of our approach and
of the solution environment of managing changes in
Business process implementations which we have
implemented. As mentioned earlier the details of BPEL
translation is out of the scope of this publication as we are
currently in the process of developing the OWL-S to
BPEL translator. The mapping phase from OWL-S to
BPEL will be mostly automatic and the user would be
only prompted to enter the details of the Web Services
that he/she intends to modify or add. As the flow
description at OWL-S level is strong enough to help us
map to the final BPEL code therefore this approach has
helped us save the overhead of making changes at BPEL
level, which would had been larger in number.

7. Conclusion

As it is well known, automatic code generation and
modification is a difficult task. As a step forward towards
automated change management we presented a
methodology for adapting business process
implementations. Our methodology heavily relies on the
fact that the processes are represented in a declarative,
semantically rich modeling language based on ontology –
OWL-S which itself has grounding in web services. The
approach is also a contribution to the important task to
keep align IT with business.

In the future work we will be working on the task of
figuring out the quality indicators and creating the
automatic invocation system based on that another very
important task will be to figure out the optimization that
can be made at the BPEL level while mapping the
changes of OWL-S to BPEL so that the overhead of
regenerating all the BPEL code gets eliminated.

References

[1] Andrews, T. et al.: Business Process Execution

Language for Web Services, Version 1.1
ftp://www6.software.ibm.com/software/developer/li
brary/ws-bpel.pdf, 2003

[2] Campbell, Scott; Mohun, Vamsi: Mastering
Enterprise SOA with SAP NetWeaver and mySAP
ERP, Wiley, 2006.

[3] Chrissis, Mary Beth; Konrad, Mike; Shrum, Sandy:
CMMI®: Guidelines for Process Integration and
Product Improvement. Addison Wesley Professional
2003

[4] Gaur, Harish; Zirn Markus (ed.): BPEL Cookbook:
Best Practices for SOA-Based Integration and
Composite Applications Development. Packet
Publishing 2006

[5] Hinkelmann, K., Probst, F., Thönssen, B. (2006):
Agile Process Management Framework and

Methodology. AAAI Spring Symposium on
Semantic Web Meets e-Government, Stanford
University, March 2006

[6] Karch, Steffen; Heilig, Loren: SAP NetWeaver.
Galileo Press, 2004.

[7] Kramer, Jeff and Magee, Jeff: The Evolving
Philosophers Problem: Dynamic Change
Management IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 16, NO. 11

[8] Leblang, David B. and Levine Paul H.: Software
Configuration Management: Why is it needed and
what should it do? ICSE SCM-4 and SCM-5
Workshops, on Software Configuration
Management 1995.

[9] Martin, David (ed.): OWL-S: Semantic Markup for
Web Services, http://www.daml.org/services/owl-
s/1.1/overview/, 2004.

[10] van Loon, Han: Process Assessment and ISO/IEC
15504. A reference book. Springer 2004.

The work presented in this paper is part of the
project FIT (Fostering self-adaptive e-government
service improvement using semantic technologies),
funded by the European Commission in the
Information Society Technologies program (IST-
2004-27090); http://www.fit-project.org

