A Collaborative Approach to Maturing
Process-related Knowledge

Hans Friedrich Witschel', Bo Hu', Uwe V. Riss?,

Barbara Thonssen?, Roman Brun?, Andreas Martin?, Knut Hinkelmann?

'SAP AG, Dietmar-Hopp-Allee 16
69190 Walldorf, Germany
{Ha.ns—Friedrich.Witschel, BoO1.Hu, Uwe.Riss}@sap.com
2University of Applied Sciences Northwestern Switzerland (FHNW),
Institut for Business Information Systems,
Riggenbachstr. 16, 4600 Olten, Switzerland

{Barbara.Thoenssen, Roman.Brun, Andreas.Martin, Knut.Hinkelmann}@fhnw.ch

Abstract We introduce a new approach supporting knowledge workers
in sharing process-related knowledge. It is based on the insight that -
while offering valuable context information - traditional business process
modelling approaches are too rigid and inflexible to capture the actual
way processes are executed. Therefore, business process models are made
agile and open for changes during execution. To achieve this, the strict
distinction between build time modelling and run time execution are sof-
tened and process activities are represented to the users in a way that
allows for individual adaptations. That can be done by attaching re-
sources, commenting on an issue or adding problems and solutions to
an activity or process. In addition activities can be delegated or new
(sub-)activities can be added. Thus, the model can adapt to the reality
of actual process executions and valuable resources and experiences are
proactively presented to users in the right context. A double-staged ap-
proach is chosen to apply the model in the real application scenario of a
university.

1 Introduction

Agility has emerged as an important common characteristic of successful busi-
nesses of any size, who benefit from quick response to volatile markets and rapid
changing user requirements. In this work, we inspect business agility through
the apparatus of knowledge sharing. More specifically, we leverage the process-
related knowledge, in terms of knowledge about processes (process knowledge)
and knowledge needed in processes (functional knowledge), to increase the agi-
lity of organisations. As such knowledge is used and generated during work, its
sharing and maturing has to be aligned with business processes that faithfully
reflect an organisation’s core and mission-critical activities. Businesses need to
make sure that employees, participating in mission-critical activities, share the
acquired process-related knowledge to keep established experience within the
organisation and optimise its performance in the face of employee fluctuation.

In practice, we deal with process-related knowledge with the help of Business
Process Management Systems (BPMS) and/or Workflow Management Systems
(WIMS). BPMS mainly manipulate process knowledge on the business level by
making process structures and resources explicit and by supporting process im-
provement. But they lack process automation. This is the function of W{MS,
which automate process execution (see [28], pp 8f). WfMS’s modelling func-
tionality, however, is specialised for technical aspects and is not rich enough
regarding knowledge aspects. When aligned with everyday work activities, ho-
wever, existing business process modelling and execution approaches may find
themselves overstretched in answering the call of agility due to the lack of flexibi-
lity and the amount of overhead required for predefined process models. Usually,
process models are created by experts who attempt to bring together all relevant
knowledge about a certain process and model it in a BPMS. After negotiating
and compromising, a resultant process model could truly represent how a pro-
cess appears under certain generalised circumstances. The model, however, often
differs from the reality of process execution [16]. Variations in execution, which
are seldom readily documented, become inevitable when applying process mo-
dels to new situations. The problem cannot be simply remedied with business
process reengineering, which is carried out in a structured and systematic way
and cannot keep pace with rapidly changing businesses or markets.

Coming from a totally different perspective, knowledge sharing (for all kinds
of knowledge) sometimes takes place informally, e.g., via email and telephone or
by imitation (apprenticeship). Although this is flexible and can be very efficient
at times, it usually restricts the benefits to the persons that are directly taking
part in the exchange (i.e., the information is completely lost for all others). Even
if employees have documented their experience and made it publicly available
(e.g. in a company Wiki, a lessons-learned database, or on a file share), it does
not mean that others are aware of the existence of such information. Needless to
say there is much less chance that they will be able to find it or that they will
even look for it in a given work situation where it is needed.

The intrinsic inadequacy of formal and informal process knowledge sharing
inspired us to take an eclectic approach so as to bridge exactly this gap: to learn
process models by doing and to enable adding and sharing individual know-
ledge and experience. This approach enhances agile process modelling [11] with
functional knowledge used in a specific process instance and the possibility of
its informal exchange through so-called task patterns, during the execution of
processes.

Our vision emphasises the participation of users in a succession of phases
known as seeding, evolutionary growth and re-seeding in the SER model [5]
(originally applied in the area of managing complex design environments). The
SER model describes an approach “between the two extremes of ‘put-all-the-
knowledge-in-at-the-beginning’ and ‘just-provide-an-empty-framework’ ”. It com-
bines the strengths and avoids the weaknesses of both top-down and bottom-up
approaches, respectively. The SER model assumes that once a seed is taken up
by a community, there is a phase in which the knowledge artefacts evolve in a ra-

ther uncontrolled way. According to Fischer, it is necessary not to force users to
invest much effort into formalising their contributions since this would interrupt
their normal work process (something most people are not prepared to accept).
Contribution should be kept simple and will eventually lead to structures that
are too redundant and unwieldy to be understood and managed. They are thus
pruned and restructured in the reseeding phase, which is done by a knowledge en-
gineer, removes inconsistencies and creates generalisations (i.e. removing pieces
of information that are too context-specific) and formalisations of the knowledge.
This is exactly what we want to achieve with the task pattern approach [22] that
we introduce in this paper as mediator between process modelling and individual
task execution. Projected onto the SER model, reseeding in our work is unders-
tood as a chance to understand and align the most frequent (and hence possibly
most important) contributions to task patterns in order to learn about potential
improvements of the original seeds. This realises a continuous improvement of
process models and the task patterns based on actual work activities.

The paper is organised as follows: in Section 2 task patterns as the central
building block for learning and maturing process-related knowledge is described.
This is followed by a description of our approach to monitor performed tasks
in order to semi-automatically support process model adaptations. In Section 3
we give an example of application of our new approach. Next, we describe some
technical details of the system (Section 4), then give a brief overview on related
work (Section 5) before Section 6 concludes.

2 Combining knowledge intensive processes with task
patterns

A business process is a collection of structured activities with a precise goal to
be achieved over a period of time. In general, the activities of a process are in
a pre-defined order, resources are mapped (e.g. software systems or personnel,
via roles) and the process flow is depending on fixed decision rules. The KISS
approach [4] aims to bridge the gap of a strict distinction between design time
and run time. A knowledge intensive process (KIP) can be regarded as a col-
lection of activities building the ‘skeleton’ of a business process, some activities
of which can be knowledge intensive (called ‘KIA’). Whereas ordinary activities
are always executed (i.e., in every process instanc), KIAs are optionally executed
depending on information specific for the certain process instance. That can be
application data, process data or functional data.

KIAs are modelled during build time but their execution is triggered — or
suggested — during run time based on rules. If, for example, an application has
to be checked, several KIAs could be executed such as ‘Refer to an expert’, ‘Ask
for additional material’ or ‘Clarify with applicant’. Which one is selected within
a specific process instance depends on rules operating on run time information:
information already provided for the application, decisions taken in previous
process instances or data that is available from related information sources, e.g.
out of a legacy system maintaining data of former applications.

We will call the concrete instance of an activity (assigned to particular mem-
bers of an organisation) task, regardless whether it is a KIA or not. A task is
a definition of a particular item of work that specifies the requirements and the
goal of this work (cf. [1]). We introduce task patterns as abstractions of tasks
that provide information and experience that is generally relevant for the task
execution. By abstraction we mean common features of a family of similar tasks,
which aim at the same goals under similar conditions (for details refer to [3,27]).

In this section, we describe how agile business processes can work together
with task patterns to yield a new form of knowledge sharing. Meanwhile, in order
to fully understand the way informal process knowledge to be attached to agile
business processes, we explain the notion of task patterns more closely.

2.1 Task patterns

In our approach of maturing process knowledge described below, we will intro-
duce a one-to-one relationship between an activity and a task pattern. That is,
for each activity of an agile business process there is exactly one task pattern that
serves as the basis for collecting information and experience around the tasks.
Tasks concretise task patterns and thus instantiate the corresponding activity.
How does this facilitate the transfer of information and experience work? In
general, task patterns provide two means for knowledge sharing (cf. [21,27]):

1. Abstraction services: these provide contextual information about resources
that can be used in the task — including information objects such as files, but
also persons who are to be contacted — or sub-tasks that should be started.

2. Problem/solution objects: These enable users to share experience regarding
typical problems that may arise during the execution of a task, together with
descriptions of possible solutions.

Users can interact with task patterns in two ways:

Consuming information from task patterns: when working on a task T, a sui-
table task pattern P can be displayed alongside the task. The user can access
P’s abstraction services to consume the resources that they offer and attach
them to the current task T. The same applies to solutions offered for a
problem that happens to occur in T.

Contributing to task patterns: users can also attach resources to their concrete
task T while working on it. This enables them to associate such information
with abstraction services or problem/solution objects of the task pattern P
and publishing that information to a shared repository.

The approach maintains a clear separation between personal knowledge,
contained in the individual task, and public experience, contained in the task
pattern. This separation prevents an intermixture of private and public data.
Therefore, it makes transparent to the user which task information is exposed
and shared with others and which remains under individual control [20].

2.2 Sharing work experience

Regarding knowledge sharing, each activity of the process model is the basic unit
to which information and experience gets attached. This happens via a one-to-
one relationship between task patterns and activities (which are instantiated by
tasks): for each activity, the corresponding task pattern collects the information
and experience that users have attached to it while they were working on a task.

In the following, we will describe how agile business processes and task pat-
terns play together. We differentiate such interplay into one that happens at
design time and one that occurs during run time. At design time, for each acti-
vity, a draft of a corresponding task pattern is created with the aid of a group
of experts who define an initial set of abstraction services and known problems
together with their solutions. The initial pattern should be thought of as a seed
that triggers the process of attaching experience to a work context. Subject to
further refinement, the initial task patterns do not have to be (and will never
be) complete in the beginning. These initial patterns are meant to grow larger
while their users learn more about the activities and mature over time adapting
to the actual way in which they are executed in practice.

All process information is stored in an ontology-based data store. Specifically,
this store contains all information on task instances, encapsulated in so-called
task description objects (TDOs). TDOs are filled dynamically by the back-end
system and loaded into the front-end once a task gets accepted by a user (see
below) - they thus serve as a means of communication between the two.

At run time, when the process is actually executed, the existing task pattern
for an activity, which we denote by P, will be retrieved. A task pattern mana-
gement system will first consult the task ontology to retrieve the abstraction
services of P. It then helps users to instantiate P by recommending candidate
fillers or each abstraction service. More specifically, one proceeds as follows (this
flow of action is also depicted in Fig 1):

1. The workflow engine identifies which task T with corresponding task pattern
P should be performed next.

2. A task T is instantiated and a set of organisational members is selected as
potential executors of T. The selected persons are notified. They can accept
or reject the request to execute T.

3. Since T is the instantiation of an activity A and since for each activity A,
there is exactly one task pattern P assigned to it, the workflow engine will
next retrieve that task pattern P.

4. Tt then determines the context of T and uses it to retrieve relevant resources
that should be added to abstractor services of the task pattern P. These
resources will be added to the TDO corresponding to T.

5. Once the first person has accepted the task, the corresponding TDO is fet-
ched, together with the task pattern P. P is enriched with the information
in TDO and both the task details and the task pattern are displayed to the
user in a task management application.

6. The user can then start working on the task, making use of the informa-
tion provided in the task pattern P. Resources, but also problem/solution

objects can be easily copied from the task pattern into the task, becoming
attachments to it.

7. On the other hand, the user can also attach her own resources (that she
considers useful in the context of T) to T.

8. Enhancements of a task pattern are stored locally. They will be available
if the same user performs another task T’ that corresponds to the same A
(i.e. when the task pattern is loaded next time). However, if the user chooses
to publish the enhancements, she can do so by a simple click, making them
available to the others who have to perform a task of type A.

9. When the user has finished working on the task, she sets the status to “com-
pleted” and the workflow engine is notified of this.

Backend

_Ontology >

Task @E

Description
Object

N

Frontend =7 Interface

=

hY
\
]
/

v
AT

Figure 1. Flow of action during runtime

2.3 Learning from work experience

As mentioned in the introduction task patterns should be thought of as seeds
to aggregate information contributed by end-users. This participation becomes
particularly relevant since we do not believe in fully automatic improvements of
process models. Instead we envisage a tool that is able to detect deviations and
analyse the collected data in order to make suggestions for process changes, in a
way similar to work carried out in the area of process mining, e.g. [30]. Based on

those blueprints the knowledge engineer will be able to decide on the suggested
changes. For process improvement the following aspects will be analysed [3,27]:

Subtasks that are frequently added to a task (or as subtask abstractor to the
corresponding task pattern): if many users add the same (kind of) subtask
to a given task, this indicates that potentially the process model can be
improved by including that subtask as a new activity.

Delegation of tasks can indicate that either the work balance is not correctly
considered or the skills of the assigned persons are not appropriately evalua-
ted. Rules for resource allocation should be adapted accordingly.

Problem/solution objects added to a task pattern can be included by other
users in their tasks. If many users do so, it means that the problem oc-
curs frequently and that it should be considered for process or task pattern
improvements.

Resources such as documents or persons can be attached to abstractor services
of task patterns, indicating the contexts in which they are useful (namely the
process, and activity, task, respectively they are being used in). An analysis
of these contexts is generally of interest as it may help to categorise the
resources according to their domains of application. Similarly, an analysis of
the set of all documents attached to task patterns can lead to a categorisation
of documents based on the type of situation(s) in which they are consumed.

In all these cases, an initial step in the analysis is aligning the corresponding
items with each other, e.g. to find out that two problem descriptions refer to the
same (type of) problem in reality.

3 An application scenario

This section presents the scenario of an evaluation study that was performed
within the University of Applied Sciences Northwestern Switzerland (FHNW)
in the context of the EU-funded project MATURE to elicit application sce-
narios and requirements for the ICT system that is being built to realise the
process-related knowledge maturing concepts presented in this paper. There-
fore, a prototype (later also called “demonstrator”) was built that implements
the concepts described here.

The model for the business process of matriculation is shown in Fig 2. We
can see that the student, the administration office and the dean are involved in
the process; tasks can be assigned to the administration office or to the dean as
they directly interact with the system. KIAs are highlighted.

The matriculation process starts with a student’s application request. After
the receipt of the request, several checks of the application have to be executed
in a KIP. As it is shown, the KIAs will not be executed in a pre-defined order.
The reason is the following: Depending on where the applicant comes from (but
also further criteria), different activities have to be performed. E.g. the avai-
lability of a matriculation number has only to be checked if the applicant is

from Switzerland. Therefore, a variable process identification and selection ser-
vice automatically chooses the needed activities and assigns them to the possible
executor of the activity. The determination of study fees is based on given re-
gulations and can be supported using a constraint checking service for decision
making. Further on, a resource allocation service assigns artefacts based on given
criteria. For instance, when checking the approval of a university, appropriate
websites or experts from a respective nation are attached to the activity.

Applicant

A—ICH

Send application

Adminstration Office — =

Send rejection
) letter
Fill application __--~" " Check Fulfil the
_form -~ . Application'y requirements?
"‘—"‘ - - ; ‘; . u
Yes .

Accept
application

formally

—
Not sure

Check Criteria
List

Dean

1

Figure 2. First part of the matriculation process model and the KIP sub-process
“Check application”.

After these checks, the process goes on and it is decided whether the needed
requirements are fulfilled or not. The branching and decision making service can
be invoked in order to decide, whether it is already clear at this stage that the
requirements cannot be fulfilled by the applicant and a rejection letter has to be
sent. Otherwise the applicant is invited to an interview. Afterwards an interview
will be held, the application dossier will be updated and a commission meeting
will be held to decide about the acceptance or rejection of the applicant. The
process continues with mainly administrative activities until it reaches the end.

3.1 Example of task pattern application

Now, we illustrate the application of task patterns by giving an example from
the matriculation scenario described above. Let us consider the task of checking
the completeness of an applicant’s certificates (part of the knowledge intensive
sub-process “Check Application” displayed in Fig 2).

| Check certificates of applicant John Doe
% Created 12.11.09 by Jane Doe

E""@ Due: 18.11.09

Quick Notes
=} Files

| & JaneDoe(OWNER)

- (" Outlook/Web Resources

@ Checklists

. Subtasks Bookmark Abstractor

Proposed Instances

=P Problem/Solution Official FHNW guidelines » =P Add To Task
P Problem: Foreign certificates do not fit into our Knut's checklist 3 Browse (Semantic)
OpeninB
QO Tas <o Add Bookmark.. Ao S

@ Use As Subtask

» Publish: 'Checklists' ‘

Figure 3. An example of a task pattern and how to consume information from it.

Fig 3 shows a task pattern that corresponds to this activity. More precisely,
the details of the current task - namely “Check certificates of applicant John
Doe” - are displayed (e.g. due date and owner of the task) on the left-hand
side. The task pattern with its abstractor services (called “abstractors” in the
UI) is displayed on the right-hand side. We can see two abstractor services:
i) experienced colleagues: colleagues who have handled many applications; ii)
checklists: lists that provide guidance as to what should be checked and how.

The figure also shows a context menu that appears when right-clicking on
the latter abstractor service. It contains the resources that are offered by the
abstractor service. Clicking on “Add to Task” will result in a resource being dis-
played on the left-hand-side, vertically aligned with the corresponding abstractor
service. Imagine, for example, that a new colleague by the name of Jane has to
work on the task at hand and needs to get acquainted with the official guidelines.

In that case, she would access the information in the abstractor service “Check-
lists” and consult the “Official FHNW guidelines” as depicted in the figure. A
similar context menu exists for resources on the left-hand side, allowing these to
be added to abstractor services and thus for the contribution of resources to task
patterns. For example, Jane might discover — after having worked for some time
on various student applications — that a few additional things usually need to be
checked, which she documents in her own private checklist that she attaches to
her tasks. Via the context menu, she can add this checklist to the “Checklist”
abstractor service such that it becomes available for other users. Thus, using
these context menus, end-users can easily consume information offered in task
patterns and contribute to them.

3.2 Demonstrator evaluation

In order to verify the automated process knowledge maturing, comprehensive
use of the approach is necessary. Therefore an evaluation phase of one month
where the demonstrator was used, including intermediate and post-evaluation
interviews, was conducted.

The main aim of the evaluation was to use the demonstrator in a productive
environment. Therefore it was of special interest whether KISSmir addresses the
clear need and/or problem in the tester’s context. The post-interview should
give an insight about the use of all functionalities, suggestions, tasks patterns,
knowledge sharing but also technology acceptance. Of further interest was the
perceived degree of support of the demonstrator regarding maturing of process-
related knowledge and how it could be improved.

The results showed first that process adaptations do actually surface as a
result of the use of the demonstrator. Although the matriculation process was
modeled together with the end users, some adaptations of it were detected to be
necessary during productive use. Furthermore necessary changes in rules were
identified. As a second point, the process support was experienced as big benefit
of using the demonstrator. The end users liked to be reminded about the tasks
needed to be executed and being guided by the sequence. As the number of
tasks and their sequence varies for each process execution, they didn’t have to
think about which tasks need to be done and were able to accomplish the tasks
more quickly. Thirdly, the resource recommender functionality was analysed. For
each task, experts, historical cases and web-links were proposed (if available) by
the demonstrator. The post-evaluation interview showed that with exception of
web-links these suggestions have been used very seldom. The main reason for
the limited use was mainly the unawareness of it and a (too) small knowledge
base. Further features as quick notes which can be added to any task at any time
and problem/solution objects were perceived as being useful. Last but not least
the knowledge sharing functionalities were analysed. By adding resources to task
patterns and publish this information, knowledge can be shared. The same can be
done with problem/solution descriptions. However, similar as for the suggestions,
the interviewed persons think these are nice functionalities as needed information
could be found easier and faster, but did not use it extensively.

4 Implementation

4.1 Process modelling and execution

The modelling of an adaptive business process can be performed in a seman-
tic modelling environment like ATHENE [9] or WSMO-Studio [2]. ATHENE
provides the creation of several models (process model, organisational model,
etc.) based on ontologies. The activities of the processes will be linked with the
related task patterns and resources (files, roles, etc.) which are stored in seman-
tic repositories (@ in Fig 4). Further on, the process model can be enhanced
with adaptivity services (@). After modelling the process in ATHENE it can be
transferred to the execution framework and stored in a semantic repository (®).
The model is represented in a knowledge representation language like RDF /S*
or OWL? and will be transformed via a transformation service into a process
execution language like BPEL? or XPDL2.

The transformed process can be executed in the execution framework (e.g.,
BPEL workflow engine) (@). The process can access the linked resources which
are stored in the semantic repositories. During run time the process can invoke
the defined adaptivity services. The “task management service”, which is part
of the process framework, invokes the task GUI (graphical user interface) (®).
The instance management service stores and holds the instances.

4.2 Task pattern and task management

Tasks and task patterns are delivered to the user through a Personal Task Ma-
nagement infrastructure. That infrastructure is part of the NEPOMUK Social
Semantic Desktop [7].

It consists of a semantic task management framework (STMF [19]) which
offers task-related (web) services over the entire desktop and handles the mani-
pulation, storage and retrieval of all task and task pattern-related information;
information is stored locally in the RDF repository of the Social Semantic Desk-
top in a way that ensures seamless semantic integration of information objects
and task representations.

As a user interface, the KASIMIR sidebar [6] has been developed, which
builds on the STMF task services and makes Task Management functionality
available to end- users. KASIMIR allows users to assign basic task properties and
to attach involved persons, information objects and subtasks. It also allows users
to view task patterns attached to a task, consume its resources and contribute
In addition to the local storage of personal task (pattern) information, there is
a server component that stores public task patterns. It is based on Semantic
MediaWiki (SMW?), which allows the initial modelling and later adaptation

! http://www.w3.org/TR/rdf-schema/

2 http://www.w3.org/TR/owl-features/

3 http://docs.oasis-open.org/wsbpel /2.0/0S /wsbpel-v2.0-OS.html
4 http://www.wfmec.org/xpdl.html

® http://semantic-mediawiki.org/

Modelling Framework / Software

A—EH | -
] T =3
E 6 = R | .------ -----—--9._\
3 - EW-A— = |- o
z ~E=-T0 - I Somrices

expert service

historical case
service

© Transformation Services |

Execution Framework

agile process
service

task pattern
service

instance mgmt. invocation service

Run time

service (3rd party app.)

Figure 4. Customer Information Portal Architecture

of public task patterns over the Wiki’s user interface. Entities related to task
patterns are modelled as SMW semantic templates.

5 Related Work

Making business processes agile to meet the requirements of knowledge intensive
work and faster changing business environments is a topic that has already been
addressed for some time. It is guided by the insight that in knowledge intensive
processes the particular sequence of tasks is often variable and depends on the
information at hand. Traditionally Workflow Management Systems (W{MS) dis-
tinguish between design time and run time [12] and it is the dependency of the
process on input information that makes this distinction to become blurry. An
overview of approaches to tackle this problem can be found in [22].

Usually a process model containing all activities and resources is created du-
ring design time. Flexibility is provided through modelling choices and merge-
constructs. This can lead to highly complex models which are hard to main-
tain [25]. In addition, especially in the tertiary sector the processes are knowledge-
intensive and cannot be foreseen for all exceptional situations and circumstances.
During run time exceptional situations, unforeseeable events and unpredictable

situations have to be dealt with. Therefore van der Aalst et al. introduced case
handling ’as a new paradigm for supporting flexible business processes’ [31] in
order to avoid predefined process execution.

However, supporting flexible process execution does not cover all of the di-
mensions of change in business processes (dynamism, adaptability, flexibility)
as introduced by Sadiq et al. [25]. For this, tracking and mining of the actual
process/task variations users perform are necessary.

To support agility, semantic technologies have been used in several approaches,
amongst others by [8] for process implementation and querying by [14] to build
their ‘agent based business process management system’ or by [22] to facilitate
task patterns. Especially the pattern approach is tightly built on semantic tech-
nologies and an approach for combining it with Service-Oriented Architecture
has been proposed [23]. Another semantic approach to process management ba-
sed on Unified Activity Management has been suggested by Moran et al. [18].
A general overview is given by [17]. Recently, Feldkamp, Hinkelmann et al. in-
troduced the ‘KISS approach’ combining semantically enriched process models
with business rules ([18], [10]). Although this approach reaches the flexibility
to execute agile processes, two aspects are not yet covered: a) how to share the
knowledge gained through task handling without cumbersome publishing and b)
how to automatically detect execution variances. In this paper we have shown
how deviations between the actual process execution and the process model can
be identified and how adaptations can be recommended automatically. Question
a) is addressed in section 2.2, whereas question b) is detailed in section 2.3.

As far as the world of business process modelling is concerned, approaches to
collect and mature process knowledge collaboratively are scarce. [15] has propo-
sed an architecture that integrates knowledge management and business process
management. However, this approach follows a traditional expert-driven way.
Approaches in the field of process mining (e.g. [31]) - which try to extract pro-
cess knowledge from implicit information contained in system event logs - exploit
user interaction, but do not actually encourage explicit user contributions to an
evolving process knowledge repository. With respect to knowledge work this is
a complicated task since the nature of individual tasks and the associated ex-
perience cannot be identified properly enough to enable successful knowledge
proliferation. Sharing process knowledge in a task management environment has
been explored, for example, in [13], suggesting to copy information from previous
related tasks. Task patterns, as a more elaborate way of mediating experience
transfer have been proposed in [22] and elaborated further, cf. e.g. [3,20,27].
In [29], a more process-oriented view of task patterns has been introduced where
users can exchange and collaboratively develop lightweight process models.

6 Conclusion and Future Work

In this article, we have outlined a new paradigm of knowledge and experience
sharing that enhances agile business processes. This is done through connecting
activities in formal process models with loosely regulated task patterns emerged

from our everyday work. The former gives guidance to the business target while
the latter allows us to proceed in a way that best suits the end-users’ needs.
Task patterns capture how people carry out a task (process knowledge) and how
people leverage resources in supporting their solutions (functional knowledge).
They thus help to avoid the problem of rigidity inherent in traditional process
modelling approaches since it involves the end-users in shaping the support that
the model offers and since it eventually adapts to the reality of end-users’ process
execution.

The results of our evaluation of the prototype with the University of Applied
Sciences Northwestern Switzerland are promising: both the conceptual frame-
work and the prototype were well accepted even though some non-technical
barriers were identified.

In our approach we have followed the idea of knowledge maturing as a process
that understands “[. . .|learning activities as embedded into, interwoven with, and
even indistinguishable from everyday work processes|. ..]” [26]. According to the
knowledge maturing concept learning is seen as a social and collaborative acti-
vity, in which individual and organisational learning processes are dynamically
interlinked among each other [24]. This approach has been applied to knowledge
intensive processes where the continuous collaborative enhancement appears as
particularly important due to continuously changing work targets and situations.

Furthermore, we envisage the following improvement to our approach. For
the future, it is planned to implement and deploy the agile business process
(together with appropriate task patterns) at the project application partners
and to observe if and how the intended process knowledge maturing takes place.
Compared to other types of knowledge, the evolution of process knowledge is
less transparent and thus more difficult to analyse. The interplay between task
patterns and process model provides valuable insights. Indeed, after having the
process productive over a certain period, a reasonable amount of real-life usage
data of tasks and task patterns can be accumulated. Such data provide the
ground for automatic or customised business process model updates.

Acknowledgements

This work is supported by the European Union IST fund through the EU FP7
MATURE Integrating Project (Grant No. 216356).

References

1. Katriina Bystrom and Preben Hansen. Conceptual framework for tasks in in-
formation studies. Journal of the American Society for Information Science and
Technology, 56(10):1050-1061, 2005.

2. Marin Dimitrov, Alex Simov, Vassil Momtchev, and Mihail Konstantinov. Wsmo
studio—a semantic web services modelling environment for wsmo. In Enrico Fran-
coni, Michael Kifer, and Wolfgang May, editors, The Semantic Web: Research and
Applications, volume 4519 of Lecture Notes in Computer Science, chapter 53, pages
749-758. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Ying Du, Uwe V. Riss, Ernie Ong, Liming Chen, David Patterson, and Hui Wang.
Work experience reuse in pattern based task management. In 9th International
Conference on Knowledge Management (I-KNOW), pages 149158, 2009.
Daniela Feldkamp, Knut Hinkelmann, and Barbara Thonssen. Kiss: Knowledge-
intensive service support: An approach for agile process management. In Advances
in Rule Interchange and Applications, International Symposium (RuleML), pages
25-38. 2007.

Gerhard Fischer, Jonathan Grudin, Raymond McCall, Jonathan Ostwald, David
Redmiles, Brent Reeves, and Frank Shipman. Seeding, evolutionary growth and re-
seeding: The incremental development of collaborative design environments, 2001.
Olaf Grebner, Ernie Ong, and Uwe V. Riss. Kasimir: Work process embedded task
management leveraging the semantic desktop. In Multikonferenz Wirtschaftsinfor-
matik (MKWI 2008), pages 715-726, Berlin, 2008. GITO-Verlag.

Tudor Groza, Siegfried Handschuh, Knud Moller, Enrico Minack, Mehdi Jazayeri,
Cédric Mesnage, Gerald Reif, and Résa Gudjénsdéttir. The nepomuk project- on
the way to the social semantic desktop, 2007.

Martin Hepp, Frank Leymann, John Domingue, Chris Bussler, Alexander Wahler,
and Dieter Fensel. Semantic business process management: A vision towards using
semantic web services for business process management. In IEEE International
Conference on e-Business Engineering (ICEBE), pages 535-540, 2005.

Knut Hinkelmann, Simon Nikles, and Lukas von Arx. An ontology-based modeling
tool for knowledgeintensive services. In 1st International Conference on Methodo-
logies, Technologies and Tools Enabling E-Government, pages 43-56, 2007.

Knut Hinkelmann, Fabian Probst, and Barbara Thonssen. Agile process manage-
ment framework and methodology. In AAAI Spring Symposium on Semantic Web
Meets e-Government, 2006.

Knut Hinkelmann, Barbara Thonssen, and Fabian Probst. Referenzmodellierung
fiir e-government-services. Wirtschaftsinformatik, 5:356-366, 2005.

David Hollingsworth. The workflow reference model. workflow management coali-
tion, 1993.

Harald Holz, Oleg Rostanin, Andreas Dengel, Takeshi Suzuki, Kaoru Maeda, and
Katsumi Kanasaki. Task-based process know-how reuse and proactive information
delivery in tasknavigator. In CIKM ’06: Proceedings of the 15th ACM international
conference on Information and knowledge management, pages 522-531, New York,
NY, USA, 2006. ACM.

N. R. Jennings, T. J. Norman, P. Faratin, P. O’Brien, and B. Odgers. Autono-
mous agents for business process management. Applied Artificial Intelligence: An
International Journal, 14(2):145-189, 2000.

J. Jung, I. Choi, and M. Song. An integration architecture for knowledge manage-
ment systems and business process management systems. Computers in Industry,
58(1):21-34, January 2007.

D. Karagiannis, S. Junginger, and R. Strobl. Introduction to business process
management systems. In B. Scholz-Reiter and Eberhard Stickel, editors, Business
process modelling, pages 81-106. Springer, 1996.

Florian Lautenbacher and Bernhard Bauer. A survey on workflow annotation &
composition approaches. In Workshop on Semantics for Business Process Mana-
gement (SBPM), 2007.

Thomas P. Moran, Alex Cozzi, and Stephen P. Farrell. Unified activity manage-
ment: supporting people in e-business. Commun. ACM, 48(12):67-70, 2005.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Ernie Ong, Olaf Grebner, and Uwe V. Riss. Pattern-based task management:
Pattern lifecycle and knowledge management. In 4th Conference of Professional
Knowledge Management (WM 2007), volume 2, pages 357-364, 2007.

Uwe V. Riss, Ulrike Cress, Joachim Kimmerle, and Stefan Martin. Knowledge
transfer by sharing task templates: two approaches and their psychological requi-
rements. Knowledge Management Research € Practice, 5(4):287-296, 2007.

Uwe V. Riss, Olaf Grebner, and Ying Du. Task journals as means to describe
temporal task aspects for reuse in task patterns. In 9th Furopean Conference on
Knowledge Management, pages 721-730, 2008.

Uwe V. Riss, Alan Rickayzen, Heiko Maus, and Wil M. P. van der Aalst. Chal-
lenges for business process and task management. Journal of Universal Knowledge
Management, 0(2):77-100, 2005.

Uwe V. Riss, Ingo Weber, and Olaf Grebner. Business process modelling, task ma-
nagement, and the semantic link. In AAAT Spring Symposium AI Meets Business
Rules and Process Management, pages 99-104, 2009.

Uwe V. Riss, Hans F. Witschel, Roman Brun, and Barbara Thonssen. What is or-
ganizational knowledge maturing and how can it be assessed? In 9th International
Conference on Knowledge Management (I-KNOW), pages 28-38, 2009.

Shazia Sadiq, Wasim Sadiq, and Maria Orlowska. Pockets of flexibility in workflow
specification. In Kunii, Sushil Jajodia, and Arne Sglvberg, editors, Conceptual
Modeling ER 2001, volume 2224 of Lecture Notes in Computer Science, chapter 38,
pages 513-526. Springer Berlin Heidelberg, Berlin, Heidelberg, December 2001.
Andreas Schmidt, Knut Hinkelmann, Tobias Ley, Stefanie N. Lindstaedt, Ronald
Maier, and Uwe Riss. Conceptual foundations for a service-oriented knowledge
and learning architecture: Supporting content, process and ontology maturing.
In Tassilo Pellegrini, Séren Auer, Klaus Tochtermann, and Sebastian Schaffert,
editors, Networked Knowledge - Networked Media, volume 221, chapter 6, pages
79-94. Springer Berlin Heidelberg, 2009.

Benedikt Schmidt and Uwe V. Riss. Task patterns as means to experience sharing.
In Marc Spaniol, Qing Li, Ralf Klamma, and Rynson W. H. Lau, editors, Advances
in Web Based Learning - ICWL 2009, volume 5686 of LNCS, chapter 42, pages
353-362. Springer, Berlin, Heidelberg, 2009.

Workflow Management Coalition Specification. Workflow Management Coalition,
Terminology € Glossary (Document No. WFMC-TC-1011). Workflow Manage-
ment Coalition Specification, February 1999.

Todor Stoitsev, Stefan Scheidl, and Michael Spahn. A framework for light-weight
composition and management of ad-hoc business processes. pages 213-226. 2007.
Wil van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Discove-
ring process models from event logs. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1128-1142, 2004.

Wil M. P. van der Aalst, M. Weske, and D. Griinbauer. Case handling: a new
paradigm for business process support. Data & Knowledge Engineering, 53(2):129—
162, May 2005.

