
1

1

Sematic Web

Reasoning

Holger Wache
SS 2008

2

Lecture Outline

1. Axiomatic Semantics for RDF and RDFS
2. Direct Semantics based on Inference Rules
3. Querying of RDF/RDFS Documents using RQL

2

3

Copyright notice

Some slides are taken from the “RDF” lectures
by Antoine Isaac (VU, Amsterdam).
I would like to thank him for the allowance to use
his slides in this course!

4

The Semantics of RDF(S)

The semantics of RDFS can be expressed in
natural language:

2.3.2 rdfs:subClassOf [old RDFS specs]
“This property specifies a subset/superset relation between
classes. The rdfs:subClassOf property is transitive. If class A is a
subclass of some broader class B, and B is a subclass of C, then A
is also implicitly a subclass of C. Consequently, resources that are
instances of class A will also be instances of class C, since A is a
subset of both B and C. Only instances of rdfs:Class can have the
rdfs:subClassOf property and the property value is always of
rdf:type rdfs:Class. A class may be a subclass of more than one
class.”

Question: is A a subclass of A?

3

5

Axiomatic Semantics
We formalize the meaning of the modeling
primitives of RDF and RDF Schema
By translating into first-order logic
We make the semantics unambiguous and
machine accessible
We provide a basis for reasoning support by
automated reasoners manipulating logical
formulas

6

The Approach

All language primitives in RDF and RDF Schema are
represented by constants:

Resource, Class, Property, subClassOf, etc.

A few predefined predicates are used as a
foundation for expressing relationships between the
constants
We use predicate logic with equality
Variable names begin with ?
All axioms are implicitly universally quantified

4

7

An Auxiliary Axiomatisation of Lists

Function symbols:
nil (empty list)
cons(x,l) (adds an element to the front of the list)
first(l) (returns the first element)
rest(l) (returns the rest of the list)

Predicate symbols:
item(x,l) (tests if an element occurs in the list)
list(l) (tests whether l is a list)

Lists are used to represent containers in RDF

8

Basic Predicates

PropVal(P,R,V)
A predicate with 3 arguments, which is used to represent an
RDF statement with resource R, property P and value V
An RDF statement (triple) (R, P,V) is represented as
PropVal(P,R,V).

Type(R,T)
Short for PropVal(type,R,T)
Specifies that the resource R has the type T

Type(?r,?t) ↔ PropVal(type,?r,?t)

5

9

RDF Classes

Constants: Class, Resource, Property, Literal
All classes are instances of Class

Type(Class,Class)
Type(Resource,Class)
Type(Property,Class)
Type(Literal,Class)

10

RDF Classes (2)

Resource is the most general class: every class and
every property is a resource

Type(?p,Property) → Type(?p,Resource)
Type(?c,Class) → Type(?c,Resource)

The predicate in an RDF statement must be a property

PropVal(?p,?r,?v) → Type(?p,Property)

6

11

The type Property

type is a property

PropVal(type,type,Property)

type can be applied to resources (domain) and has a
class as its value (range)

Type(?r,?c) → (Type(?r,Resource) ∧ Type(?c,Class))

12

The Auxiliary FuncProp Property

P is a functional property if, and only if,
it is a property, and
there are no x, y1 and y2 with P(x,y1), P(x,y2) and y1≠y2

Type(?p, FuncProp) ↔
(Type(?p, Property) ∧
∀?r ∀?v1 ∀?v2

(PropVal(?p,?r,?v1) ∧
PropVal(?p,?r,?v2) → ?v1 = ?v2))

7

13

Containers

Containers are lists:

Type(?c,Container) → list(?c)
Containers are bags or sequences or alternatives:

Type(?c,Container) ↔
(Type(?c,Bag) ∨ Type(?c,Seq) ∨ Type(?c,Alt))

Bags and sequences are disjoint:

¬(Type(?x,Bag) ∧ Type(?x,Seq))

14

Containers (2)

For every natural number n > 0, there is the selector
_n, which selects the nth element of a container
It is a functional property:

Type(_n,FuncProp)
It applies to containers only:

PropVal(_n,?c,?o) → Type(?c,Container)

8

15

Subclass

subClassOf is a property:

Type(subClassOf,Property)

If a class C is a subclass of a class C', then all instances
of C are also instances of C':

PropVal(subClassOf,?c,?c') ↔
(Type(?c,Class) ∧ Type(?c',Class) ∧
∀?x (Type(?x,?c) → Type(?x,?c')))

16

Subproperty

P is a subproperty of P', if P'(x,y) is true whenever P(x,y)
is true:

Type(subPropertyOf,Property)

PropVal(subPropertyOf,?p,?p') ↔
(Type(?p,Property) ∧ Type(?p',Property) ∧
∀?r ∀?v (PropVal(?p,?r,?v) →

PropVal(?p',?r,?v)))

9

17

Domain and Range

If the domain of P is D, then for every P(x,y), x∈D

PropVal(domain,?p,?d) →
∀?x ∀?y (PropVal(?p,?x,?y) → Type(?x,?d))

If the range of P is R, then for every P(x,y), y∈R

PropVal(range,?p,?r) →
∀?x ∀?y (PropVal(?p,?x,?y) → Type(?y,?r))

18

Lecture Outline

1. Basic Ideas of RDF
2. XML-based Syntax of RDF
3. Basic Concepts of RDF Schema
4. Τhe Language of RDF Schema
5. Axiomatic Semantics for RDF and RDFS
6. Direct Semantics based on Inference Rules
7. Querying of RDF/RDFS Documents using RQL

10

19

Semantics based on Inference Rules

Semantics in terms of RDF triples instead of restating
RDF in terms of first-order logic
… and sound and complete inference systems
This inference system consists of inference rules of the
form:

IF E contains certain triples
THEN add to E certain additional triples

where E is an arbitrary set of RDF triples

20

Examples of Inference Rules

IF (?x,?p,?y)
THEN (?p,rdf:type,rdf:property)

IF (?u,rdfs:subClassOf,?v),
(?v,rdfs:subclassOf,?w)

THEN (?u,rdfs:subClassOf,?w)

IF (?x,rdf:type,?u),
(?u,rdfs:subClassOf,?v)

THEN (?x,rdf:type,?v)

11

21

Examples of Inference Rules (2)

Any resource ?y which appears as the value
of a property ?p can be inferred to be a
member of the range of ?p

This shows that range definitions in RDF Schema
are not used to restrict the range of a property, but
rather to infer the membership of the range

IF (?x,?p,?y), (?p,rdfs:range,?u)
THEN (?y,rdf:type,?u)

22

RDF(S) Semantics: Examples

IF (Netherlands, type, EuropeanCountry),
(EuropeanCountry, subClassOf, Country)

THEN (Netherlands, type, Country)

IF (aspirin, alleviates, headache),
(alleviates, range, symptom)

THEN (headache, type, symptom)

12

23

RDF(S) Semantics: Examples

IF (Νετηερλανδσ, type, ΕυροπεανΧουντρψ),
(ΕυροπεανΧουντρψ, subClassOf, Χουντρψ)

THEN (Νετηερλανδσ, type, Χουντρψ)

IF (ασπιριν, αλλεϖιατεσ, ηεαδαχηε),
(αλλεϖιατεσ, range, σψμπτομ)

THEN (ηεαδαχηε, type, σψμπτομ)

24

Further Examples of Inference Rules

IF (?X, ?R, ?Y), (?R, domain, ?T)
THEN (?X, type, ?T)
IF (?X, ?R, ?Y), (?R, range, ?T)
THEN (?Y, type, ?T)
IF (?T1, subClassOf, ?T2), (?T2, subClassOf, ?T3)
THEN (?T1, subClassOf, ?T3)
IF (?X, type, ?T1), (?T1, subClassOf, ?T2)
THEN (?X, type, ?T2)
IF (?X, type, Class)
THEN (?X, subClassOf, ?X)

13

25

Lecture Outline

1. Basic Ideas of RDF
2. XML-based Syntax of RDF
3. Basic Concepts of RDF Schema
4. Τhe Language of RDF Schema
5. Axiomatic Semantics for RDF and RDFS
6. Direct Semantics based on Inference Rules
7. Querying of RDF/RDFS Documents using RQL

26

Querying
Databases: formulate a query on the relational
model

(table z, row x, column y)
HTML: formulate a location and get back an
entire document

http://www.cs.vu.nl/index.html
XML: formulate a query on the tree: path
expressions

/country/geography/capital@name
RDF?

14

27

Some Properties for QLs
Adequacy

The QL makes use of all the primitives in the
data model

Expressiveness
“Able to formulate the questions we want to ask”
Operators and functions

Closure
Result set in the same model as the source
model
We can “compose” queries

28

Adequacy for an RDF QL
Path expressions

Traverse the RDF graph, allowing both nodes and
edges to be searched

Optionals
RDF is semistructured: values of properties may
not be specified for every instance

Reification
Namespaces

15

29

Adequacy for an RDFS QL
Support for RDF schema mechanisms

RDFS constructs
Statements using these constructs
Awareness to RDFS formal semantics

[XSD datatypes, Language]
[Containers and collections]

30

Why not XML Query Language?
Different XML Representations

XML at a lower level of abstraction than RDF
There are various ways of syntactically
representing an RDF statement in XML
Thus we would require several XQuery
queries, e.g.

//uni:lecturer/uni:title if uni:title element
//uni:lecturer/@uni:title if uni:title attribute
Both XML representations equivalent!

16

31

Example in RDF:
Retrieving Capital Cities

<rdf:Description rdf:about=”#Netherlands”>
<rdf:type rdf:resource=”#Country”/>
<geo:hasCapital rdf:resource=”#Amsterdam”/>

</rdf:Description>

XML path expression
/rdf:Description/[rdf:type/@rdf:resource=”#Country”]/geo:hasCapital/@rdf:resource

<geo:Country rdf:about=”#Netherlands”>
<geo:hasCapital rdf:resource=”#Amsterdam”/>

</geo:Country>

XML path expression
/geo:Country/geo:hasCapital/@rdf:resource

More possibilities if nested descriptions…

32

Why not XML Query Language?
Understanding the Semantics

<uni:lecturer rdf:ID="949352">
<uni:name>Grigoris Antoniou</uni:name>

</uni:lecturer>
<uni:professor rdf:ID="949318">

<uni:name>David Billington</uni:name>
</uni:professor>
<rdfs:Class rdf:about="#professor">

<rdfs:subClassOf rdf:resource="#lecturer"/>
</rdfs:Class>

A query for the names of all lecturers should return both Grigoris
Antoniou and David Billington

17

33

Paths in RDF

Netherlands Amsterdam
hasCapital

EuropeanCountry Capital

CityCountry

hasCapital

GeographicEntity

type type

subClassOf subClassOf

subClassOfsubClassOf

domain

range

“020”

areacode

34

Path Expressions in RDF

No root element (cf. XML Paths)
Paths can start at any location in the graph
Both nodes and edges of graph are labeled!
More than one type of relation between nodes, not just

“nested inside”
So we need a more powerful type of path
expression

18

35

Requirements for an RDF QL

Understand the data model
directed, labeled graphs
semi-structured

Path expressions
through the RDF graph, not the XML tree
specifying both node and edge labels

Compositionality
complex queries can be 'built up' by combining simpler
queries

Support for RDF Schema
understand the semantics of subClassOf, Class, etc.

36

Query Language Proposals

No standardized query language for RDF, but
many proposals:

RQL (RDF Schema Query Language)
RDQL (RDF Data Query Language)
SeRQL (Sesame RDF Query Language)
SPARQL (W3C standard, being developed)

19

37

SeRQL
Language proposal based on best practices

Redesign of RQL, incorporating ideas from many
other query languages
Developed in the Sesame project

Expressive language, but still fairly easy to
use
Support for RDF Schema
Implementation: Sesame RDF framework
(Aduna, VU)

38

SeRQL Query Syntax
SeRQL uses a select-from-where syntax (like SQL):

select: the entities (variables) you want to return
select X

from: the (sub)graph you want to get the information from
from {X} geo:areacode {Y}

where: additional constraints on objects, using operators
where Y like “020”

Using namespace: prefix information
using namespace

geo=<http://www.geography.org/schema.rdfs#>

20

39

SeRQL Query Syntax

Composing complex queries from different elementary
specifications

SELECT X
FROM {X} geo:areacode {Y}
WHERE Y = “020”
USING NAMESPACE

geo =
<http://www.geo.org/schema.rdfs#>

40

SeRQL Path Expressions

Path expressions for the RDF model
Both edges and nodes can be specified
Variables
Branches: one node can have several outgoing
edges
Optionals: for some objects, a value may or may not
be specified

21

41

SeRQL Path Expressions
{X} geo:hasCapital {geo:Amsterdam}
{X} geo:hasCapital {Y}
{X} P {Y}

Netherlands Amsterdam
hasCapital

“020”

areacode

42

SeRQL: Chaining and Branching

Chaining:
{X} geo:hasCapital {Y} geo:areacode {Z}

Equivalent to
{X} geo:hasCapital {Y}, {Y} geo:areacode {Z}

Branching:
{X} geo:name {Y};

geo:areacode {Z}

Equivalent to
{X} geo:name {Y}, {X} geo:areacode {Z}

22

43

Optional Path Expressions

RDF is semi-structured
Even when the schema says some object should have a
particular property, it may not always be present in the data
Example: persons can have names and email addresses, but
Frank is a person without a known email address

person001 “Antoine”

aisaac@few.vu.nl

person002 “Frank”

name

email

name

44

Optional path expressions (2)

“give me all persons, their first names, and if
known their email address”
an optional path expression is needed

select
Person, Name, Email

from
{Person} my:name {Name};

[my:email {Email}]

23

45

Boolean comparisons

Comparison operators in where clause
String comparison:

WHERE X like "The Netherlands"
WHERE X like "*Netherlands"

Boolean comparison:
X < Y, X <= Y, Z < 20, Z = Y, etc.

Boolean combination of those operators
AND, OR, NOT
WHERE (Y > 10 AND Y < 30)

OR (NOT X LIKE “Rott*”)

46

Boolean comparisons and
datatypes

RDF has basic datatypes for literals
Actually re-uses XML Schema datatypes:

xsd:integer, xsd:float, xsd:string

A datatyped literal looks like this:
“20”^^xsd:integer

You can use this in SeRQL queries to compare
values:

X < “21”^^xsd:integer

24

47

Query Results

SeRQL select-queries return variable bindings
For each variable in the query, it gives a value.
The result is a table, where each column represents
a variable and each row a set of values

48

Query result: example

Query: “return all countries with the cities
they contain, and their areacodes, if known”

Result (table of bindings):

ZYX

ParisFrance

“070”DenHaagNetherlands

“020”AmsterdamNetherlands

ZYX

select X, Y, Z
from {X} geo:containsCity {Y} [geo:areacode {Z}]

25

49

Query result: example
Query: return all capital cities

Result as an RDF/XML document :

select Y
from {X} geo:hasCapital {Y}

<rs:ResultSet rdf:about=''>
<rs:resultVariable>Y</rs:resultVariable>
<rs:solution>

<rs:ResultSolution>
<rs:binding rdf:parseType='Resource'>
<rs:variable>Y</rs:variable>
<rs:value rdf:resource='http://www.geo.com/cities#London'/>

</rs:binding>
</rs:ResultSolution>
<rs:ResultSolution>

</rs:solution>
<rs:resultSet>

50

Query Result forms

SeRQL select-queries return variable bindings
Do we need something else?

Statements from RDF original graph
Data extraction

New statements derived from original data according
to a specific need

Data conversion, view

26

51

SeRQL Construct-queries
Construct-queries return RDF statements

The query result is either a subgraph of the original graph,
or a transformed graph

construct *
from {X} geo:hasCapital {Y}

Netherlands Amsterdam
hasCapital

Subgraph
query:

construct {Y} my:inCountry {X}
from {X} geo:hasCapital {Y}

AmsterdamNetherlands
inCountry

Transformation
query:

52

Schema Querying

SeRQL has support for Schema querying
Class instances
Subclasses, Subproperties
etc.

SeRQL “interprets” RDF(S) semantics
RDF and RDFS predicates explicitly mapped to
their formal semantics

Transitivity of subClassOf property, inheritance of class
instances, etc.

So it is not just querying the data graph

27

53

Schema Querying

Netherlands Amsterdam
hasCapital

Capital

City

EuropeanCountry

Country

hasCapital

GeographicEntity

type type

subClassOf subClassOf

subClassOfsubClassOf

domain

range

data level

ontology level

“020”

areacode

54

Schema Querying

Netherlands Amsterdam
hasCapital

Capital

City

EuropeanCountry

Country

hasCapital

GeographicEntity

type type

subClassOf subClassOf

subClassOfsubClassOf

domain

range

data level

ontology level

“020”

areacode

28

55

Schema querying example

Query: “return the range of the property
hasCapital”

Query: “return all subclasses of
GeographicEntity ”

select X
from {geo:hasCapital} rdfs:range {X}

select X
from {X} rdfs:subClassOf
{geo:GeographicEntity}

56

Ontology/Data Querying

Netherlands Amsterdam
hasCapital

Capital

City

EuropeanCountry

Country

hasCapital

GeographicEntity

type type

subClassOf subClassOf

subClassOfsubClassOf

domain

range

data level

ontology level

“020”

areacode

29

57

Ontology/Data Querying Example

Query: “return all instances of the class Country”

Query: “return all countries, and the assertions
(properties and values) for each”

select X
from {X} rdf:type {geo:Country}

select X, P, Y
from {X} rdf:type {geo:Country};

P {Y}
where P != rdf:type

58

Ontology/Data Example (2)

Query: “return all things that have a capital,
and their type”

Problem?
Z=GeographicEntity
Z=Country
Z=EuropeanCountry

select X, Z
from {X} geo:hasCapital {Y};

rdf:type {Z}

30

59

SeRQL offers three built-in predicates that act
as 'virtual' properties:

{X} serql:directSubClassOf {Y}
true if and only if:

X subclassOf Y
X not equal to Y
There is no other class Z such that

X subClass Z and Z subClass Y

{X} serql:directSubPropertyOf {Y}
{X} serql:directType {Y}

SeRQL Schema Built-ins

60

Built-ins (2)

Netherlands Amsterdam
hasCapital

Capital

City

EuropeanCountry

Country

hasCapital

GeographicEntity

type type

subClassOf subClassOf

subClassOfsubClassOf

domain

range

serql:directType

serql:directSubClassOf

serql:directSubClassOf

31

61

Ontology/Data Example (2)

Query: “return all things that have a capital,
and their type”

select X, Z
from {X} geo:hasCapital {Y};

serql:directType {Z}

62

SeRQL: Other Features

Composition of query results
UNION, INTERSECT, MINUS

“Return all countries that are not European
countries”
select X
from {X} rdf:type {geo:Country}
MINUS
Select Y
from {Y} rdf:type {geo:EuropeanCountry}

32

63

SeRQL: Other Features (2)
Nested queries

Already seen newProperty?
serql:directSubclassOf

construct {Y} my:newProperty {X}
from {X} rdfs:subClassOf {Y}
Where X!=Y and NOT EXISTS

(Select Z
from {X} rdfs:subClassOf {Z},

{Z} rdfs:subClassOf {Y}
where Z!=X AND Z!=Y
)

64

Summary
We need a specific query language for RDF
and RDF Schema

XQuery won't do the job

SeRQL is a proposal language
Very expressive

Path expressions, schema/data querying, etc.

Formal semantics
Ease of use
Implemented

33

65

Complement: SPARQL

W3C Candidate recommendation
Already implemented

Jena RDF framework, etc…
Similar features
(Slightly) different syntax

PREFIX geo: <http://www.geo.org/schema.rdfs#>
SELECT ?X
WHERE

{ ?X geo:areacode "020" }

