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How to simplify?

Query = … � Φ � … � ( …� Ψ � …)

First Idea: 
Omit some parts (e.g. Φ, Ψ)
First Idea: 
Omit some parts (e.g. Φ, Ψ)

QI ⊆ QI

QI ⊆ QI

QI         QI
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Query = … � Φ � … � ( …� Ψ � …)

How to simplify? (II)

Second Idea: 
Rewrite some parts (e.g. Φ, Ψ)
Second Idea: 
Rewrite some parts (e.g. Φ, Ψ) QI ⊆ QI

�

QI ⊆ QI

�

QI ⊆ QI
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Cadoli-Schaerf-
Approximation for DLs

Replacing some sub terms in concept 
expressions
Well-founded theory with (theoretically) 
nice results
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S0

S1

Cadoli-Schaerf-
Approximation: Example

S2

Depth: 0 Depth: 1Depth: 2

Depth of subconcept D: 
number of universal quantifiers that have D in its scope.
Depth of subconcept D: 
number of universal quantifiers that have D in its scope.
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Application: Classification

Central process
Classify Term Q
Contained in
– Generating the 

subsumption
hierarchy

– Instance Retrieval 
Q
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Mixed Results:
Classifying in TAMBIS

Application: Classification of Concepts
⇒ sequence of subsumption test: C � D

8 181157 32

≈24 ≈0≈0 ≈279

157 32
8 149
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Further Results

14

Query = … � Φ � … � ( …� Ψ � …)�

Problem: Term Collapsing

Term D
– Very often also 

conjunction of subterms

� �

Term C 
– very often 

conjunction of 
subterms

– e.g. conjunctive 
queries

�

Subsumption Queries 
have this structure 

very often 



8

15

Classifying in TAMBIS (IV)

65 = 35,9%157 = 100% 190 = 62,1%Term Collapsing:

16

Lessons learned

Avoid Term Collapsing
– Replace ψ with something else than � or ⊥

Find better places to rewrite
– Ontology-adapted φ?
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Focused Case: Instance Retrieval

Find all instances a which belongs to a query Q: 
a:Q
Tool InstanceStore:
– Try to replace DL reasoning as much as possible with 

(scalable) DB retrieval
– Only applyable to role-free A-Boxes

a:Q ↔ Ia � Q; Ia concept description of instance a
Boolean Conjunctive Queries
– q1∧L∧ qn, where q1,L,qn are of the form x:C or 
〈x,y〉:R

– Restrict to those which can be converted to a concept 
expression C
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New Approximation Method:
Heuristic Ordering of Conjuncts

Compute a ranking value 
for each conjunct

Order the conjuncts q1,L,qn
according to their value
Complete approximated 
query with more and more 
expensive conjuncts

R
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Φ(q1)

qn qiq1

Φ(qi) Φ(qn)

Φ(q1) Φ(qi)Φ(qn) < <

Query

qnqiq1 ∧ ∧ ∧ ∧.. ..

∧ ∧.. ∧
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How to order conjuncts?

According to the needed computation time 
for each conjunction
– Estimate the computation time a priori

According to the possible search space 
reduction
– Prefer conjuncts which eliminate a lot of  

instances

20

How to estimate the 
computation costs?
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Effects of Cadoli-Schaerf for 
Subsumption

C � D
Semantics

(C � D)⊥
“a⊥ “

C � D ↔ � C � ¬D
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Effects of Cadoli-Schaerf for 
Subsumption

C � D
Semantics

(C � D)⊥
“a⊥ “

(C � D)⊥ ↔ � (C � ¬D)⊥
C⊥ D⊥¬D⊥
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C � D

(C � D)⊥

Effects of CS for Subsumption: 
Term Collapsing

Semantics

“a⊥ “

Term collapsing

24

Effects of new Approximation

Semantics

not changed;
Term collapsing avoided

C � D

(C � D)Δ(Ia � Q)Δ

(Ia � Q)

only Q changed
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Results: Subsumption tests
More Levels

26

Results: Time
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Standard: KAON2

OWL DL TBox
(no nominals)

Translation to
Disjunctive Datalog
[ExpTime]

Query SWRL Rules
(only DL-safe)

Disjunctive Datalog Reasoning Engine [coNP] 

OWL DL ABox

Answer

suffices for
some queries
e.g. instance
retrieval for
named classes

32

(Approximated: KAON2) = Screech

OWL DL TBox
(no nominals)

Translation to
Disjunctive Datalog
[ExpTime]

Query SWRL Rules
(only DL-safe)

Disjunctive Datalog Reasoning Engine [coNP] 

OWL DL ABox

Answer

suffices for
some queries
e.g. instance
retrieval for
named classes

OWL DL TBox

language weakening

split program

[P]

Can be performed 
offline.
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Screech simple example

serbian � croatian � european
eucitizen � european
german � french � beneluxian � eucitizen
beneluxian ≡ luxembourgian � dutch � belgian

serbian(ljiljana). serbian(nenad). german(pascal).
french(julien). croatian(boris). german(markus). 
german(stephan). croatian(denny). indian(sudhir). 
belgian(saartje). german(rudi). german(york).
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Screech simple example
beneluxian ≡ luxembourgian � dutch � belgian

KAON2 translates into the following four clauses:

luxembourgian(x) ∨ dutch(x) ∨ belgian(x) ← beneluxian(x)
beneluxian(x) ← luxemburgian(x)
beneluxian(x) ← dutch(x)
beneluxian(x) ← belgian(x)

Screech split first clause:

luxembourgian(x) ← beneluxian(x)
dutch(x) ← beneluxian(x)
belgian(x) ← beneluxian(x)

� luxembourgian(saartje)
� dutch(saartje)
� belgian(saartje) 

� luxembourgian(saartje)
� dutch(saartje)
� belgian(saartje) 
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Screech reasoning

data complexity is P

complete
but unsound

inference can be described in terms of 
standard notions from non-monotonic 
reasoning
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Screech Performance 
(not optimized yet)

Galen ontology
– 673 axioms, 175 classes
– randomly populated with 500 individuals

After KAON2: 267 disjunctions in 133 rules eliminated

Complete run: 
– queried for the extensions of all 175 Galen classes
– resulting in 5809 classifications (Screech)

• 5353 (i.e. 92.2%) correct
– For 138 out of 175 classes: computed extension correct
– Average time saved: 39.0%
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Summary
Approximation approaches start to improve 
performance
– Cadoli-Schaerf Approximation seems to not to work in 

practical settings
– Heuristic approximation but performance improvements 

(only) in restricted cases?!
– Screech 40% speed-up with only 8% wrong answers

but only in one use-case
Open questions:
– Try to understand (theoretically) why they work
– Benchmarking (more use-cases)
– What about Robustness? 

Thank you for your attention!


