

SCHEMA-BASED SEMANTIC MATCHING

Pavel Shvaiko

joint work on "semantic matching" with Fausto Giunchiglia and Mikalai Yatskevich

joint work on "ontology matching" with Jérôme Euzenat

1st European Semantic Technology Conference (ESTC'07), Semantic Web Technology Showcase

31 May 2007, Vienna, Austria

2

Outline

Part I: The matching problem

Part II: State of the art in ontology matching

Part III: Schema-based semantic matching

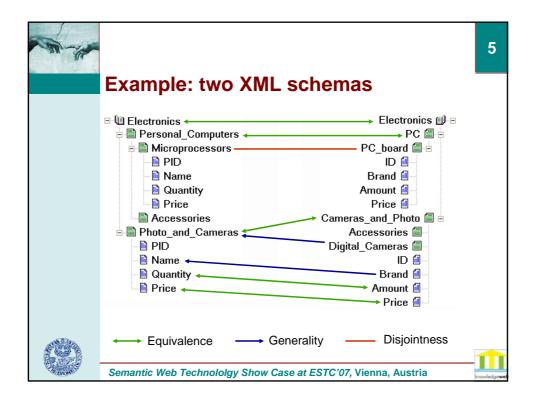
Part IV: Evaluation (technology showcase)

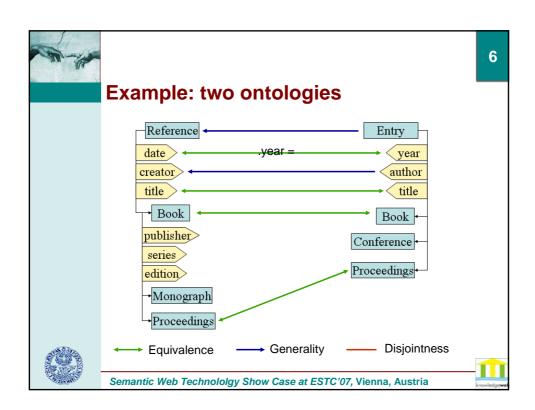
Part V: Conclusions

- Part I: The matching problem
 - Problem statement
 - Applications
- Part II: State of the art in ontology matching
- Part III: Schema-based semantic matching
- Part IV: Evaluation (technology showcase)
- Part V: Conclusions

Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

4




Matching operation

Matching operation takes as input ontologies, each consisting of a set of discrete entities (e.g., tables, XML elements, classes, properties) and determines as output the relationships (e.g., equivalence, subsumption) holding between these entities

Statement of the problem

Scope

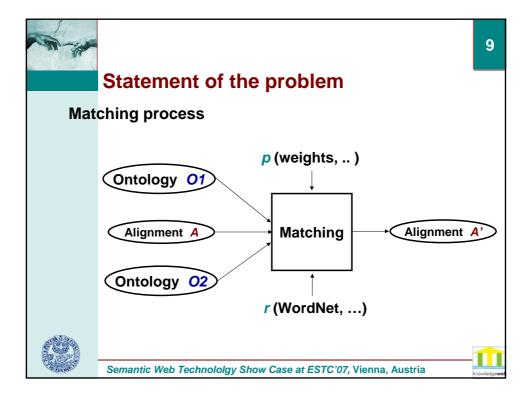
- Reducing heterogeneity can be performed in two steps:
 - oMatch, thereby determine the alignment
 - •Process the alignment (merge, transform, translate...)

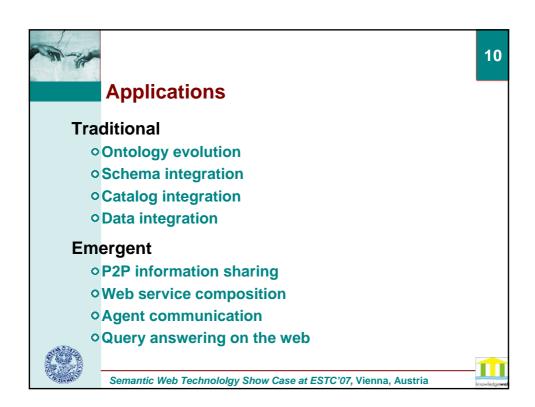
Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

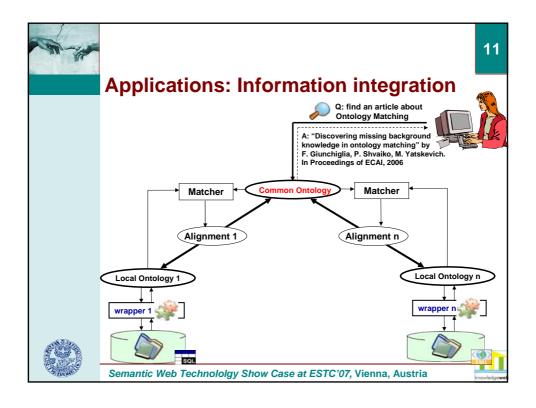
8

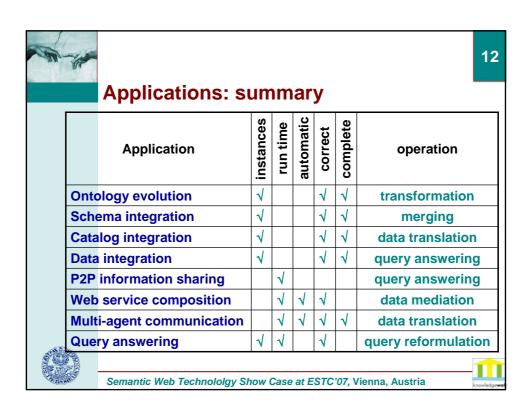
Statement of the problem

Correspondence is a 5-tuple <id, e1, e2, R, n>


- oid is a unique identifier of the given correspondence
- oe1 and e2 are entities (XML elements, classes,...)
- R is a relation (equivalence, more general, disjointness,...)
- *n* is a confidence measure, typically in the [0,1] range


Alignment (A) is a set of correspondences


- with some cardinality: 1-1, 1-n, ...
- osome other properties (complete)

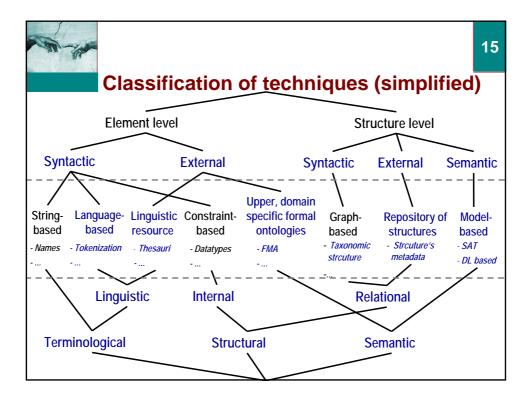


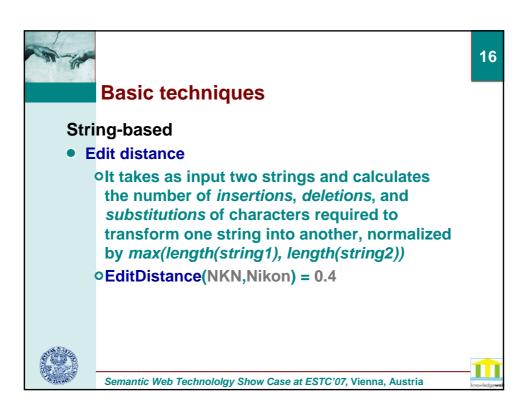
III knowlednese

- Part I: The matching problem
- Part II: State of the art in ontology matching
 - Classification of matching techniques
 - Overview of matching systems
- Part III: Schema-based semantic matching
- Part IV: Evaluation (technology showcase)
- Part V: Conclusions

Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

14


Classification of basic techniques


Three layers

- The upper layer
- •Granularity of match
 - Interpretation of the input information
- The middle layer represents classes of elementary (basic) matching techniques
- The lower layer is based on the kind of input which is used by elementary matching techniques

Basic techniques (cont'd)

Linguistic resources: WordNet

It computes relations between ontology entities by using (lexical) relationships of WordNet

QA ⊆ B if A is a hyponym or meronym of B

Brand ⊆ Name

•A ⊇ B if A is a hypernym or holonym of B

Europe ⊇ **Greece**

•A = B if they are synonyms

Quantity = Amount

◆A ⊥ B if they are antonyms or siblings in part of hierarchy

Microprocessors ⊥ PC Board

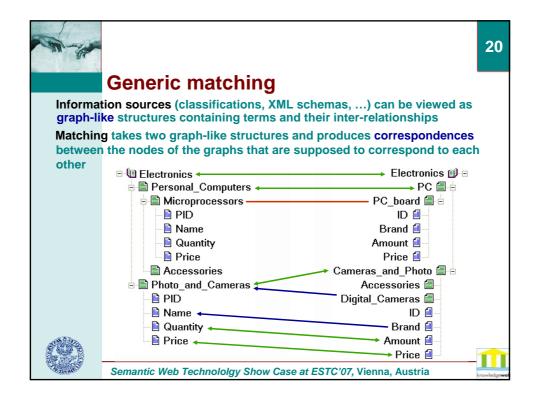
Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

18

Systems: analytical comparison

~50 matching systems exist, ...we consider some of them

		SF	Artemis	Cupid	COMA	Prompt	OLA	S-Match
Element-level	Syntactic	string-based, data types, key properties	domain compatibility, language- based	string-based, language-based, data types, key properties	string-based language-based, data types	string-based, domains and ranges	string-based, data types, language-based	string-based, language- based
	External	-	common thesaurus (CT)	auxiliary dictionary	auxiliary dictionary	-	WordNet	WordNet
Structure-level	Syntactic	iterative fix-point computation	matching of neighbors via CT	tree matching weighted by leaves	DAG (tree) matching with a bias towards leaf or children structures	bounded path matching (arbitrary links, is-a links)	iterative fix-point computation, matching of neighbors	-
	Semantic	-	-	-	-	-	-	SAT



- Part I: The matching problem
- Part II: State of the art in ontology matching
- Part III: Schema-based semantic matching
 - Semantic matching
 - Iterative semantic matching
- Part IV: Evaluation (technology showcase)
- Part V: Conclusions

Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

Semantic matching in a nutshell

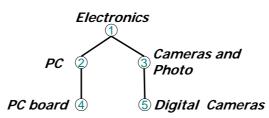
Semantic matching: Given two graphs G1 and G2, for any node $n1_i \in G1$, find the strongest semantic relation R' holding with node $n2_i \in G2$

Computed R's, listed in the decreasing binding strength order:

equivalence { = }
more general/specific { □, □}
disjointness { ⊥ }
I don't know {idk}

We compute semantic relations by analyzing the *meaning* (concepts, not labels) which is codified in the elements and the structures of ontologies

Technically, labels at nodes written in natural language are translated into propositional logical formulas which explicitly codify the labels' intended meaning. This allows us to codify the matching problem into a propositional validity problem


Semantic Web Technololgy Show Case at ESTC'07, Vienna, Austria

22

Concept of a label & concept at a node

Concept of a label is the propositional formula which stands for the set of documents that one would classify under a label it encodes

Concept at a node is the propositional formula which represents the set of documents which one would classify under a node, given that it has a certain label and that it is in a certain position in a tree

Four macro steps

Given two labeled trees T1 and T2, do:

- 1. For all labels in T1 and T2 compute concepts at labels
- 2. For all nodes in T1 and T2 compute concepts at nodes
- 3. For all pairs of labels in T1 and T2 compute relations between concepts at labels (background knowledge)
- 4. For all pairs of nodes in T1 and T2 compute relations between concepts at nodes

Steps 1 and 2 constitute the preprocessing phase, and are executed once and each time after the ontology is changed (OFF- LINE part)

Steps 3 and 4 constitute the matching phase, and are executed every time two ontologies are to be matched (ON - LINE part)

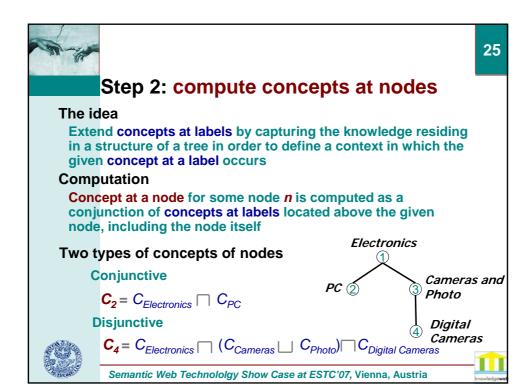
24

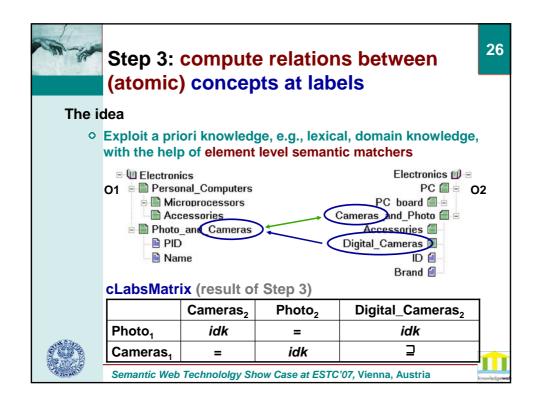
Semantic Web Technololgy Show Case at ESTC'07, Vienna, Austria

Step 1: compute concepts at labels

The idea

 Translate labels at nodes written in natural language into propositional logical formulas which explicitly codify the labels' intended meaning


Preprocessing


- Tokenization. Labels (according to punctuation, spaces, etc.) are parsed into tokens. E.g., Photo and Cameras → <Photo, and, Cameras>
- Lemmatization. Tokens are morphologically analyzed in order to find all their possible basic forms. E.g., Cameras → Camera
- Building atomic concepts. An oracle (WordNet) is used to extract senses of lemmas. E.g., Camera has 2 senses
- Building complex concepts. Prepositions, conjunctions are translated into logical connectives and used to build complex concepts out of the atomic concepts

E.g., C_{Cameras and Photo} = <Cameras, {WN_{Camera}} > \(<) < Photo, {WN_{Photo}} >

Step 3:

Element level semantic matchers

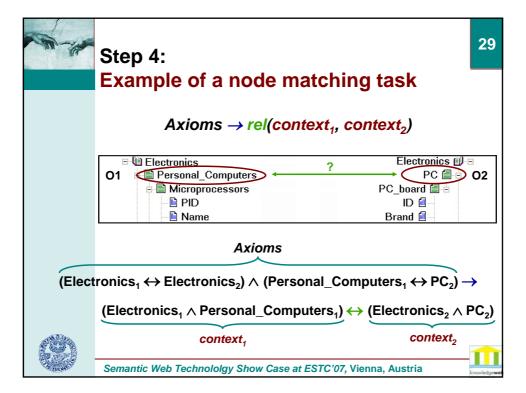
Sense-based matchers have two WordNet senses in input and produce semantic relations exploiting (direct) lexical relations of WordNet

String-based matchers have two labels in input and produce semantic relations exploiting string comparison techniques

Matcher name	Execution order	Approximation level	Matcher type	Schema info
WordNet	1	1	Sense-based	WordNet senses
Prefix	2	2	String-based	Labels
Suffix	3	2	String-based	Labels
Edit distance	4	2	String-based	Labels
Ngram	5	2	String-based	Labels

Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

28


Step 4: compute relations between concepts at nodes

The idea

- Decompose the tree matching problem into the set of node matching problems
- Translate each node matching problem, namely pairs of nodes with possible relations between them, into a propositional formula
- Check the propositional formula for validity

Step 4: Efficient semantic matching

Conjunctive concepts at nodes

- Matching formula is Horn
 - Satisfiability can be determined in linear time
 - SAT solver requires quadratic time
- We developed ad hoc linear time reasoning procedure
 - Avoid conversion to propositional formula
 - Reason on the axioms matrix

Disjunctive concepts at nodes

- Matching formula is not in CNF by construction
 - Most SAT solvers require the input formula to be in CNF
 - Conversion to CNF may lead to exponential space explosion
- Exploit structure preserving transformation
 - Size of formula in CNF is linear with respect to original formula

knowledgewel

30

- Part I: The matching problem
- Part II: State of the art in ontology matching
- Part III: Schema-based semantic matching
 - Semantic matching
 - Iterative semantic matching
- Part IV: Evaluation (technology showcase)
- Part V: Conclusions

Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

32

Motivation:

Problem of low recall (incompletness) - I

Facts

- Matching (usually) has two components: element level matching and structure level matching
- Contrarily to many other systems, the semantic matching structure level algorithm is correct and complete
- •Still, the quality of results is not very good

Why? ... the problem of lack of knowledge

On increasing the recall: an overview

Multiple strategies

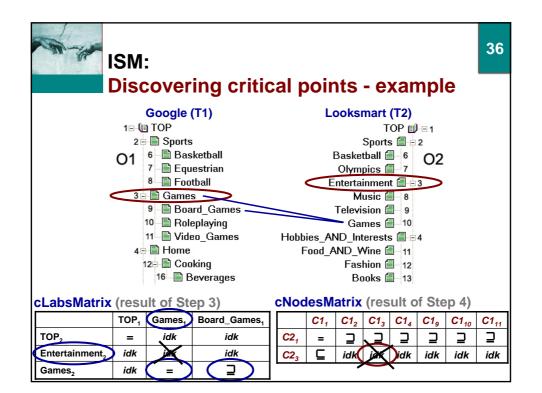
- Strengthen element level matchers
- Reuse of previous match results from the same domain of interest
 - PO = Purchase Order
- Use general knowledge sources (unlikely to help)
 - WWW
- Use, if available (!), domain specific sources of knowledge
 - UMLS, FMA

34

Iterative semantic matching (ISM)

The idea

Repeat *Step 3* and *Step 4* of the matching algorithm for some critical (hard) matching tasks


ISM macro steps

- Discover critical points in the matching process
- Generate candidate missing axiom(s)
- Re-run SAT solver on a critical task taking into account the new axiom(s)
- If SAT returns false, save the newly discovered axiom(s) for future reuse

111

Semantic Web Technololgy Show Case at ESTC'07, Vienna, Austria

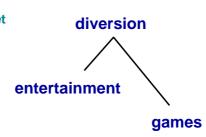
ISM:

Generating candidate axioms

- Sense-based matchers have two WordNet senses in input and produce semantic relations exploiting structural properties of WordNet hierarchies
 - Hierarchy Distance (HD)
- Gloss-based matchers have two WordNet senses as input and produce relations exploiting gloss comparison techniques
 - WordNet Gloss (WNG)
 - Extended WordNet Gloss (EWNG)
 - Gloss Comparison (GC)

Semantic Web Technololgy Show Case at ESTC'07, Vienna, Austria

38

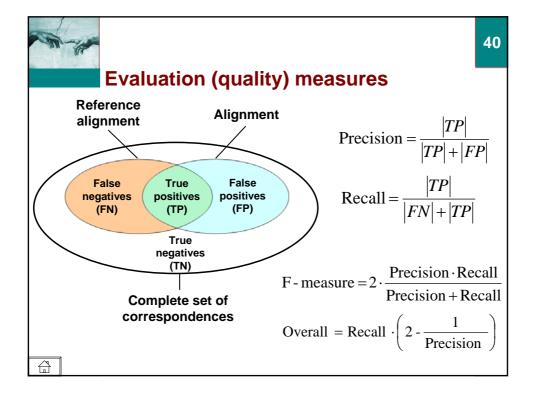


ISM: generating candidate axioms Hierarchy Distance

Hierarchy distance returns the equivalence relation if the distance between two input senses in WordNet hierarchy is less than a given threshold value (e.g., 3) and *idk* otherwise

There is no direct relation between games and entertainment in WordNet

Distance between these concepts is 2 (1 more general link and 1 less general). Thus, we can conclude that games and entertainment are close in their meaning and return the equivalence relation



- Part I: The matching problem
- Part II: State of the art in ontology matching
- Part III: Schema-based semantic matching
- Part IV: Evaluation (technology showcase)
 - Evaluation setup
 - Evaluation results
- Part V: Conclusions

Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

Test cases

#	Matching task	#nodes	max depth	#labels per tree
1	Images vs Europe	4/5	2/2	6/5
2	Product schemas	13/14	4/4	14/15
3	Yahoo Finance vs Standard	10/16	2/2	22/45
4	Cornell vs Washington	34/39	3/3	62/64
5	CIDX vs Excel	34/39	3/3	56/58
6	Google vs Looksmart	706/1081	11/16	1048/1715
7	Google vs Yahoo	561/665	11/11	722/945
8	Yahoo vs Looksmart	74/140	8/10	101/222
9	Iconclass vs Aria	999/553	9/3	2688/835

Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

42

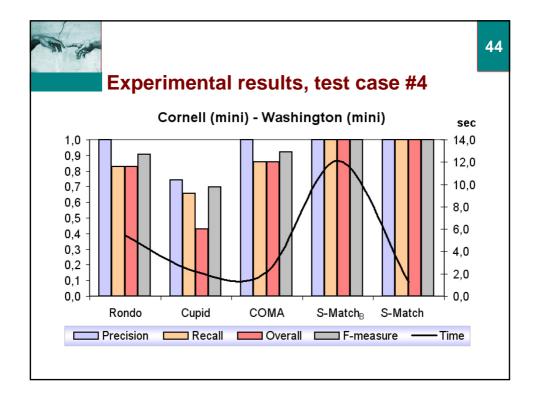
Matching systems

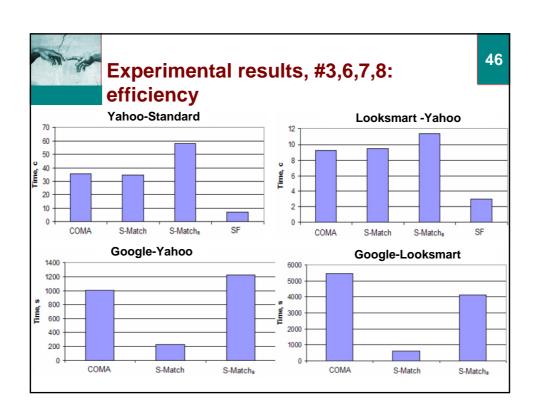
Schema-based systems

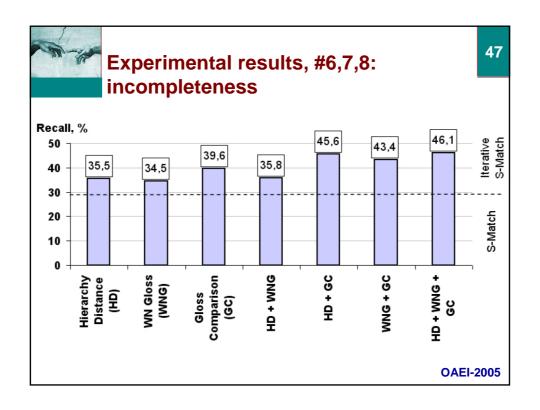
- S-Match
- Cupid
- COMA
- Similarity Flooding as implemented in Rondo
- OAEI-2005 and OAEI-2006 participants

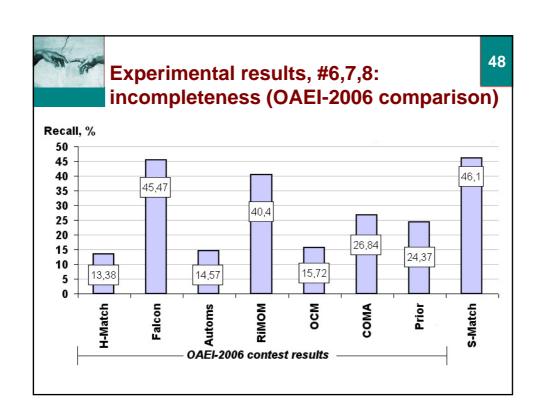
Systems were used in default configurations

PC: PIV 1,7Ghz; 512Mb. RAM; Win XP




- Part I: The matching problem
- Part II: State of the art in ontology matching
- Part III: Schema-based semantic matching
- Part IV: Evaluation (technology showcase)
 - Evaluation setup
 - Evaluation results
- Part V: Conclusions




Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

Preliminary results, test case #9

	Precision, %	Recall, %	F-measure, %
S-Match	44,82	6,45	11,29
Iterative S-Match	47,69	6,6	11,59

Observations

- The dataset is hard and challenging
- Why do we have such a low recall?
 - Gloss-like labels

Aria: Top>Accessories>Jewelry

Iconclass: Top>Nature>earth, world as celestial body>rock types; minerals and metals; soil types>rock types>precious and semiprecious stones>precious and semiprecious stones (with NAME)>precious and semiprecious stones: emerald

Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

50

Outline

- Thesis contributions
- Part I: The matching problem
- Part II: State of the art in ontology matching
- Part III: Schema-based semantic matching
- Part IV: Evaluation (technology showcase)
- Part V: Conclusions

Summary

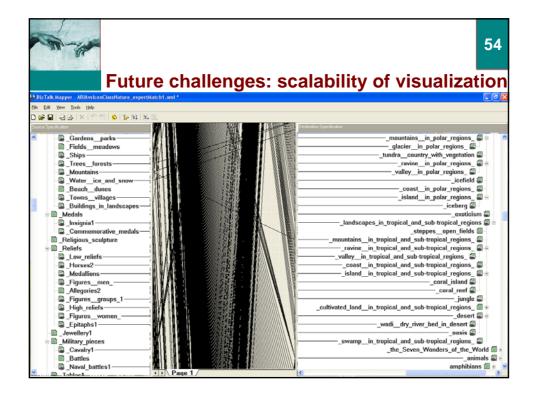
- Ontology matching applications and their requirements
- Overview of the state of the art, including classification of matching techniques and systems
- Semantic matching approach, including algorithms for basic, efficient and iterative semantic matching
- Evaluation of the approach on various data sets with encouraging results

Semantic Web Technololgy Show Case at ESTC'07, Vienna, Austria

52

Summary (cont'd)

- Automated reasoning techniques (e.g., SAT) provide good performance for industrial-strength matching tasks
- The issue is not efficiency but rather missing domain knowledge
 - This problem on the industrial size matching tasks is very hard
 - We have investigated it by examples of light weight ontologies, such as Google and Yahoo
 - Partial solution by applying semantic matching iteratively


Future challenges

- Missing background knowledge
- Interactive approaches
- Explanations of matching results
- Social and collaborative ontology matching
- Large-scale evaluation
- Infrastructures
- D ...

Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

References

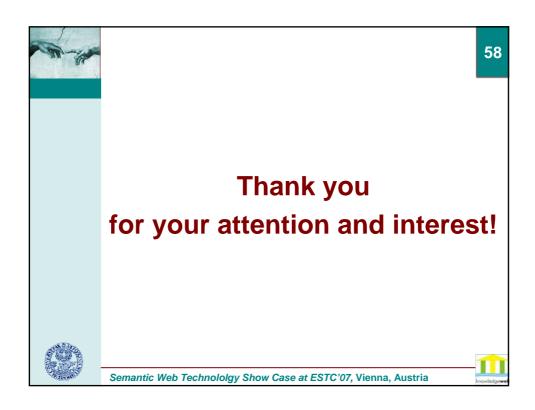
- Project website KNOWDIVE: http://www.dit.unitn.it/~knowdive/
- Ontology Matching website: http://www.OntologyMatching.org
- F. Giunchiglia, M. Yatskevich, P. Shvaiko: Semantic matching: algorithms and implementation. Journal on Data Semantics, IX, 2007.
- F. Giunchiglia, P. Shvaiko, M. Yatskevich: Discovering missing background knowledge in ontology matching. In Proceedings of ECAI'06.
- P. Shvaiko and J. Euzenat: A survey of schema-based matching approaches. Journal on Data Semantics, IV, 2005.
- P. Shvaiko, J. Euzenat, N. Noy, H. Stuckenschmidt, R. Benjamins, M. Uschold. Proceedings of the ISWC International Workshop on Ontology Matching, 2006.
- P. Avesani, F. Giunchiglia, M. Yatskevich: A large scale taxonomy mapping evaluation. In Proceedings of ISWC'05.
- B. Magnini, M. Speranza, C. Girardi. A semantic-based approach to interoperability of classification hierarchies: Evaluation of linguistic techniques. In Proceedings of COLING'04.
- P. Bouquet, L. Serafini, S. Zanobini: Semantic coordination: a new approach and an application. In Proceedings of ISWC'03.
- C. Ghidini, F. Giunchiglia: Local models semantics, or contextual reasoning = locality + compatibility. Artificial Intelligence Journal, 127(3), 2001.

Semantic Web Technology Show Case at ESTC'07, Vienna, Austria

56

Ontology Matching @ ISWC'07+ASWC'07 http://om2007.OntologyMatching.org OM-2007

Ontology Alignment Evaluation Initiative OAEI–2007 campaign


http://oaei.OntologyMatching.org/2007

