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2.2 Classical Information Retrieval Models

Boolean Model

Vectorspace Model
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2.2.1 The Boolean Model Retrieval Model

Binary index: Terms are either present or absent. Thus, 
wij ∈ {0,1}

Queries are specified as Boolean expressions in which 
terms are combined with the operators AND, OR, and 
NOT

q = ta  AND  (tb  AND  NOT tc)

Simple model based on set theory with precise semantics
The model views each document as just a set of words

vehicle OR  car AND accident
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Boolean Retrieval Function

The retrieval function can be defined recursivley

R(ti,di) = TRUE, if wij = 1 (i.e. ti is in dj )
= FALSE, if wij = 0 (i.e. ti is not in dj )

R(q1 AND q2,di) = R(q1,di)  AND  R(q2,di)

R(q1 OR q2,di) = R(q1,di)  OR  R(q2,di)

R(NOT q,di) = NOT R(q,di)

The Boolean functions computes only values 0 or 1, i.e. Boolean retrieval
classifies documents into two categories

relevant (R = 1) 
irrelevant (R = 0)
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Example für Boolesches Retrieval

(vehicle OR  car) AND  accident

Query:

R(vehicle OR  car AND  accident, d1) =
R(vehicle OR  car AND  accident, d2) =
R(vehicle OR  car AND  accident, d3) =

TRUE
FALSE
FALSE

d1 d2 d3

accident 1 0 1
car 1 1 0
cause 0 0 1
crowd 0 0 1
die 1 0 0
drive 0 0 1
four 0 0 1
heavy 1 0 0
injur 0 0 1
more 0 1 0
morning 1 0 0
people 1 0 1
quarter 0 1 0
register 0 1 0
truck 0 0 1
trucker 0 0 1
vehicle 0 1 0
vienna 1 1 1
yesterday 1 0 0

(vehicle AND  car) OR  accident

Query:

R(vehicle AND  car OR  accident, d1) =
R(vehicle AND car OR accident, d2) =
R(vehicle AND car OR accident, d3) =

TRUE
TRUE
TRUE
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Processing Boolean Queries
Conjunctive queries are most widely
used

Example: Processing simple conjunctive
queries:

Locate "car" in the dictionary
Retrieve its postings
Locate "accident" in the dictionary
Retrieve its postings
Intersect the two posting lists

Query Optimization: For more than two
terms in a conjunctive query, start with
two shortest posting lists

car AND  accident

Algorithm for the intersection of 
two posting list p1 und p2:
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Drawbacks of the Boolean Model
Retrieval based on binary decision criteria 

no notion of partial matching
No ranking of the documents is provided (absence of a 
grading scale)

The query q = t1 OR t2 OR t3 is satisfied by document
containing one, two or three of the terms t1, t2, t3

No weighting of terms, wij ∈ {0,1}
Information need has to be translated into a Boolean 
expression which most users find awkward
The Boolean queries formulated by the users are most 
often too simplistic
As a consequence, the Boolean model frequently returns 
either too few or too many documents in response to a 
user query
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2.2.2 Vector Space Model
Index can be regarded as an n-
dimensional space

wij > 0  whenever  ti ∈ dj

Each term corresponds to a 
dimension

To each term  ti is associated a 
unitary vector vec(i)
The unitary vectors vec(i)  and
vec(j) are assumed to be 
orthonormal  (i.e., index terms are 
assumed to occur independently 
within the documents)

document can be regarded as
vector started from (0,0,0)
point in space

(4,3,1)

vehicle

accident

car

(3,2,3)

d1 d2
accident 4 3
car 3 2
vehicle 1 3

Example:
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2.2.2.1 Coordinate Matching
Documents and query are represented as 

document vectors vec(dj) = (w1j, w2j, …, wkj) 
query vector vec(q) = (w1q,...,wkq)

Vectors have binary values
wij = 1 if term ti occurs in Dokument dj

wij = 0 else

Ranking:
Return the documents containing at least one query term
rank by number of occuring query terms

Ranking function: scalar product
R(q,d) = q * d

=       qi * diΣ
i=1

n
Multiply
components and 
summarize
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Coordinate Matching: Example

Resultat:

q * d1   =
q * d2   =
q * d3   =

3
2
2

query vector represents
terms of the query

accident heavy vehicles vienna

d1 d2 d3 q

accident 1 0 1 1
car 1 1 0 0
cause 0 0 1 0
crowd 0 0 1 0
die 1 0 0 0
drive 0 0 1 0
four 0 0 1 0
heavy 1 0 0 1
injur 0 0 1 0
more 0 1 0 0
morning 1 0 0 0
people 1 0 1 0
quarter 0 1 0 0
register 0 1 0 0
truck 0 0 1 0
trucker 0 0 1 0
vehicle 0 1 0 1
vienna 1 1 1 1
yesterday 1 0 0 0
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Assessment of Coordinate Matching

Advantage compared to Boolean Model: Ranking

Three main drawbacks
frequency of terms in documents in not considered
no weighting of terms
privilege for larger documents
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2.2.2.2 Term Weighting
Use of binary weights is too limiting

Non-binary weights provide consideration for partial 
matches
These term weights are used to compute a degree of 
similarity between a query and each document

How to compute the weights  wij and  wiq ?

A good weight must take into account two effects:
quantification of intra-document contents (similarity)

tf  factor, the term frequency within a document

quantification of inter-documents separation (dissi-milarity)
idf  factor, the inverse document frequency

wij = tf(i,j) * idf(i) (Baeza-Yates & Ribeirp-Neto 1999)
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TF - Term Frequency

Let freq(i,j) be the raw frequency of term 
ti within document  dj (i.e. number of 
occurrences of term ti in document dj)

A simple tf factor can be computed as

f(i,j) = freq(i,j)

A normalized  tf  factor is given by
f(i,j)  =  freq(i,j) /  max(freq(l,j))

where the maximum is computed over 
all terms which occur within the 
document  dj

d1 d2 d3 q

accident 2 0 1 1
car 1 1 0 0
cause 0 0 1 0
crowd 0 0 1 0
die 1 0 0 0
drive 0 0 1 0
four 0 0 1 0
heavy 2 0 0 1
injur 0 0 1 0
more 0 2 0 0
morning 1 0 0 0
people 1 0 2 0
quarter 0 1 0 0
register 0 1 0 0
truck 0 0 1 0
trucker 0 0 1 0
vehicle 0 1 0 1
vienna 1 1 1 1
yesterday 1 0 0 0

(Baeza-Yates & Ribeiro-Neto 1999)
For reasons of simplicity, in this example f(i,j) = freq(i,j)
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IDF – Inverse Document Frequency
IDF can also be interpreted as the amount of information  
associated with the term ti . A term occurring in few
documents is more useful as an index term than a term
occurring in nearly every document

Let ni be the number of documents containing term ti
(document frequency)

N be the total number of documents

A simple idf factor can be computed as
idf(i) =  1/ni

A normalized  idf  factor is given by
idf(i) =  log (N/ni)

the log is used to make the values of  tf and  idf comparable. 
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Example with TF and IDF

In this examle a  simple tf factor 
f(i,j) = freq(i,j)

and a simple idf factor
idf(i) =  1/ni

are used

It is of advantage to store IDF and 
TF separately

IDF d1 d2 d3

accident 0.5 2 0 1
car 0.5 1 1 0
cause 1 0 0 1
crowd 1 0 0 1
die 1 1 0 0
drive 1 0 0 1
four 1 0 0 1
heavy 1 2 0 0
injur 1 0 0 1
more 1 0 2 0
morning 1 1 0 0
people 0.5 1 0 2
quarter 1 0 1 0
register 1 0 1 0
truck 1 0 0 1
trucker 1 0 0 1
vehicle 1 0 1 0
vienna 0.33 1 1 1
yesterday 1 1 0 0
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Indexing a new Document

Changes of the indexes when adding a new document d
a new document vector with tf factors for d is created
idf factors for terms occuring in d are adapted

All other document vectors remain unchanged
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Ranking Scalar product computes co-occurrences
of term in document and query

Drawback: Scalar product privileges large 
documents over small ones

Euclidian distance between endpoint of 
vectors

Drawback: euclidian distance privileges small
documents over large ones

Angle between vectors
the smaller the angle beween query and 
document vector the more similar they are
the angle is independent of the size of the
document
the cosine is a good measure of the angle 

t1

t2

q d
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Cosine Ranking Formula

the more the directions of query a and 
document dj coincide the more relevant is
dj

the cosine formula takes into account the
ratio of the terms not their concrete
number

Let θ be the angle between q and dj

Because all values wij >= 0 the angle θ is
between 0° und 90°

the larger θ the less is cos θ
the less θ the larger is cos θ
cos 0 = 1
cos 90° = 0

t1

t2

q dj

cos(q,dj) = 
q ° dj

|q| ° |dj|
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The Vector Model

The best term-weighting schemes use weights which are 
given by 

wij =  f(i,j) *  log(N/ni)
the strategy is called a tf-idf  weighting scheme

For the query term weights, a suggestion is
wiq =  (0.5  +  [0.5 * freq(i,q) / max(freq(l,q)]) *  log(N/ni)

(Baeza-Yates & Ribeirp-Neto 1999)
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The Vector Model
The vector model with  tf-idf  weights is a good ranking 
strategy with general collections

The vector model is usually as good as the known ranking 
alternatives. It is also simple and fast to compute.

Advantages:
term-weighting improves quality of the answer set
partial matching allows retrieval of docs that approximate 
the query conditions
cosine ranking formula sorts documents according to 
degree of similarity to the query

Disadvantages:
assumes independence of index terms (??); not clear that 
this is bad though (Baeza-Yates & Ribeiro-Neto 1999)


