
Prof. Dr. Knut Hinkelmann 41Information Retrieval and Knowledge Organisation - 2 Information Retrieval

2.2 Classical Information Retrieval Models

Boolean Model

Vectorspace Model

Prof. Dr. Knut Hinkelmann 42Information Retrieval and Knowledge Organisation - 2 Information Retrieval

2.2.1 The Boolean Model Retrieval Model

Binary index: Terms are either present or absent. Thus,
wij ∈ {0,1}

Queries are specified as Boolean expressions in which
terms are combined with the operators AND, OR, and
NOT

q = ta AND (tb AND NOT tc)

Simple model based on set theory with precise semantics
The model views each document as just a set of words

vehicle OR car AND accident

Prof. Dr. Knut Hinkelmann 43Information Retrieval and Knowledge Organisation - 2 Information Retrieval

Boolean Retrieval Function

The retrieval function can be defined recursivley

R(ti,di) = TRUE, if wij = 1 (i.e. ti is in dj)
= FALSE, if wij = 0 (i.e. ti is not in dj)

R(q1 AND q2,di) = R(q1,di) AND R(q2,di)

R(q1 OR q2,di) = R(q1,di) OR R(q2,di)

R(NOT q,di) = NOT R(q,di)

The Boolean functions computes only values 0 or 1, i.e. Boolean retrieval
classifies documents into two categories

relevant (R = 1)
irrelevant (R = 0)

Prof. Dr. Knut Hinkelmann 44Information Retrieval and Knowledge Organisation - 2 Information Retrieval

Example für Boolesches Retrieval

(vehicle OR car) AND accident

Query:

R(vehicle OR car AND accident, d1) =
R(vehicle OR car AND accident, d2) =
R(vehicle OR car AND accident, d3) =

TRUE
FALSE
FALSE

d1 d2 d3

accident 1 0 1
car 1 1 0
cause 0 0 1
crowd 0 0 1
die 1 0 0
drive 0 0 1
four 0 0 1
heavy 1 0 0
injur 0 0 1
more 0 1 0
morning 1 0 0
people 1 0 1
quarter 0 1 0
register 0 1 0
truck 0 0 1
trucker 0 0 1
vehicle 0 1 0
vienna 1 1 1
yesterday 1 0 0

(vehicle AND car) OR accident

Query:

R(vehicle AND car OR accident, d1) =
R(vehicle AND car OR accident, d2) =
R(vehicle AND car OR accident, d3) =

TRUE
TRUE
TRUE

Prof. Dr. Knut Hinkelmann 45Information Retrieval and Knowledge Organisation - 2 Information Retrieval

Processing Boolean Queries
Conjunctive queries are most widely
used

Example: Processing simple conjunctive
queries:

Locate "car" in the dictionary
Retrieve its postings
Locate "accident" in the dictionary
Retrieve its postings
Intersect the two posting lists

Query Optimization: For more than two
terms in a conjunctive query, start with
two shortest posting lists

car AND accident

Algorithm for the intersection of
two posting list p1 und p2:

Prof. Dr. Knut Hinkelmann 46Information Retrieval and Knowledge Organisation - 2 Information Retrieval

Drawbacks of the Boolean Model
Retrieval based on binary decision criteria

no notion of partial matching
No ranking of the documents is provided (absence of a
grading scale)

The query q = t1 OR t2 OR t3 is satisfied by document
containing one, two or three of the terms t1, t2, t3

No weighting of terms, wij ∈ {0,1}
Information need has to be translated into a Boolean
expression which most users find awkward
The Boolean queries formulated by the users are most
often too simplistic
As a consequence, the Boolean model frequently returns
either too few or too many documents in response to a
user query

Prof. Dr. Knut Hinkelmann 47Information Retrieval and Knowledge Organisation - 2 Information Retrieval

2.2.2 Vector Space Model
Index can be regarded as an n-
dimensional space

wij > 0 whenever ti ∈ dj

Each term corresponds to a
dimension

To each term ti is associated a
unitary vector vec(i)
The unitary vectors vec(i) and
vec(j) are assumed to be
orthonormal (i.e., index terms are
assumed to occur independently
within the documents)

document can be regarded as
vector started from (0,0,0)
point in space

(4,3,1)

vehicle

accident

car

(3,2,3)

d1 d2
accident 4 3
car 3 2
vehicle 1 3

Example:

Prof. Dr. Knut Hinkelmann 48Information Retrieval and Knowledge Organisation - 2 Information Retrieval

2.2.2.1 Coordinate Matching
Documents and query are represented as

document vectors vec(dj) = (w1j, w2j, …, wkj)
query vector vec(q) = (w1q,...,wkq)

Vectors have binary values
wij = 1 if term ti occurs in Dokument dj

wij = 0 else

Ranking:
Return the documents containing at least one query term
rank by number of occuring query terms

Ranking function: scalar product
R(q,d) = q * d

= qi * diΣ
i=1

n
Multiply
components and
summarize

Prof. Dr. Knut Hinkelmann 49Information Retrieval and Knowledge Organisation - 2 Information Retrieval

Coordinate Matching: Example

Resultat:

q * d1 =
q * d2 =
q * d3 =

3
2
2

query vector represents
terms of the query

accident heavy vehicles vienna

d1 d2 d3 q

accident 1 0 1 1
car 1 1 0 0
cause 0 0 1 0
crowd 0 0 1 0
die 1 0 0 0
drive 0 0 1 0
four 0 0 1 0
heavy 1 0 0 1
injur 0 0 1 0
more 0 1 0 0
morning 1 0 0 0
people 1 0 1 0
quarter 0 1 0 0
register 0 1 0 0
truck 0 0 1 0
trucker 0 0 1 0
vehicle 0 1 0 1
vienna 1 1 1 1
yesterday 1 0 0 0

Prof. Dr. Knut Hinkelmann 50Information Retrieval and Knowledge Organisation - 2 Information Retrieval

Assessment of Coordinate Matching

Advantage compared to Boolean Model: Ranking

Three main drawbacks
frequency of terms in documents in not considered
no weighting of terms
privilege for larger documents

Prof. Dr. Knut Hinkelmann 51Information Retrieval and Knowledge Organisation - 2 Information Retrieval

2.2.2.2 Term Weighting
Use of binary weights is too limiting

Non-binary weights provide consideration for partial
matches
These term weights are used to compute a degree of
similarity between a query and each document

How to compute the weights wij and wiq ?

A good weight must take into account two effects:
quantification of intra-document contents (similarity)

tf factor, the term frequency within a document

quantification of inter-documents separation (dissi-milarity)
idf factor, the inverse document frequency

wij = tf(i,j) * idf(i) (Baeza-Yates & Ribeirp-Neto 1999)

Prof. Dr. Knut Hinkelmann 52Information Retrieval and Knowledge Organisation - 2 Information Retrieval

TF - Term Frequency

Let freq(i,j) be the raw frequency of term
ti within document dj (i.e. number of
occurrences of term ti in document dj)

A simple tf factor can be computed as

f(i,j) = freq(i,j)

A normalized tf factor is given by
f(i,j) = freq(i,j) / max(freq(l,j))

where the maximum is computed over
all terms which occur within the
document dj

d1 d2 d3 q

accident 2 0 1 1
car 1 1 0 0
cause 0 0 1 0
crowd 0 0 1 0
die 1 0 0 0
drive 0 0 1 0
four 0 0 1 0
heavy 2 0 0 1
injur 0 0 1 0
more 0 2 0 0
morning 1 0 0 0
people 1 0 2 0
quarter 0 1 0 0
register 0 1 0 0
truck 0 0 1 0
trucker 0 0 1 0
vehicle 0 1 0 1
vienna 1 1 1 1
yesterday 1 0 0 0

(Baeza-Yates & Ribeiro-Neto 1999)
For reasons of simplicity, in this example f(i,j) = freq(i,j)

Prof. Dr. Knut Hinkelmann 53Information Retrieval and Knowledge Organisation - 2 Information Retrieval

IDF – Inverse Document Frequency
IDF can also be interpreted as the amount of information
associated with the term ti . A term occurring in few
documents is more useful as an index term than a term
occurring in nearly every document

Let ni be the number of documents containing term ti
(document frequency)

N be the total number of documents

A simple idf factor can be computed as
idf(i) = 1/ni

A normalized idf factor is given by
idf(i) = log (N/ni)

the log is used to make the values of tf and idf comparable.

Prof. Dr. Knut Hinkelmann 54Information Retrieval and Knowledge Organisation - 2 Information Retrieval

Example with TF and IDF

In this examle a simple tf factor
f(i,j) = freq(i,j)

and a simple idf factor
idf(i) = 1/ni

are used

It is of advantage to store IDF and
TF separately

IDF d1 d2 d3

accident 0.5 2 0 1
car 0.5 1 1 0
cause 1 0 0 1
crowd 1 0 0 1
die 1 1 0 0
drive 1 0 0 1
four 1 0 0 1
heavy 1 2 0 0
injur 1 0 0 1
more 1 0 2 0
morning 1 1 0 0
people 0.5 1 0 2
quarter 1 0 1 0
register 1 0 1 0
truck 1 0 0 1
trucker 1 0 0 1
vehicle 1 0 1 0
vienna 0.33 1 1 1
yesterday 1 1 0 0

Prof. Dr. Knut Hinkelmann 55Information Retrieval and Knowledge Organisation - 2 Information Retrieval

Indexing a new Document

Changes of the indexes when adding a new document d
a new document vector with tf factors for d is created
idf factors for terms occuring in d are adapted

All other document vectors remain unchanged

Prof. Dr. Knut Hinkelmann 56Information Retrieval and Knowledge Organisation - 2 Information Retrieval

Ranking Scalar product computes co-occurrences
of term in document and query

Drawback: Scalar product privileges large
documents over small ones

Euclidian distance between endpoint of
vectors

Drawback: euclidian distance privileges small
documents over large ones

Angle between vectors
the smaller the angle beween query and
document vector the more similar they are
the angle is independent of the size of the
document
the cosine is a good measure of the angle

t1

t2

q d

Prof. Dr. Knut Hinkelmann 57Information Retrieval and Knowledge Organisation - 2 Information Retrieval

Cosine Ranking Formula

the more the directions of query a and
document dj coincide the more relevant is
dj

the cosine formula takes into account the
ratio of the terms not their concrete
number

Let θ be the angle between q and dj

Because all values wij >= 0 the angle θ is
between 0° und 90°

the larger θ the less is cos θ
the less θ the larger is cos θ
cos 0 = 1
cos 90° = 0

t1

t2

q dj

cos(q,dj) =
q ° dj

|q| ° |dj|

Prof. Dr. Knut Hinkelmann 58Information Retrieval and Knowledge Organisation - 2 Information Retrieval

The Vector Model

The best term-weighting schemes use weights which are
given by

wij = f(i,j) * log(N/ni)
the strategy is called a tf-idf weighting scheme

For the query term weights, a suggestion is
wiq = (0.5 + [0.5 * freq(i,q) / max(freq(l,q)]) * log(N/ni)

(Baeza-Yates & Ribeirp-Neto 1999)

Prof. Dr. Knut Hinkelmann 59Information Retrieval and Knowledge Organisation - 2 Information Retrieval

The Vector Model
The vector model with tf-idf weights is a good ranking
strategy with general collections

The vector model is usually as good as the known ranking
alternatives. It is also simple and fast to compute.

Advantages:
term-weighting improves quality of the answer set
partial matching allows retrieval of docs that approximate
the query conditions
cosine ranking formula sorts documents according to
degree of similarity to the query

Disadvantages:
assumes independence of index terms (??); not clear that
this is bad though (Baeza-Yates & Ribeiro-Neto 1999)

