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Abstract   Decision makers use models to understand and analyze a situation, to 
compare alternatives and to find solutions. Additionally, there are systems that sup-
port decision makers through data analysis, calculation or simulation. Typically, 
modeling languages for humans and machine are different from each other. While 
humans prefer graphical or textual models, machine-interpretable models have to 
be represented in a formal language. This chapter describes an approach to model-
ing that is both cognitively adequate for humans and processable by machines. In 
addition, the approach supports the creation and adaptation of domain-specific mod-
eling languages. A metamodel which is represented as a formal ontology determines 
the semantics of the modeling language. To create a graphical modeling language, 
a graphical notation can be added for each class of the ontology. Every time a new 
modeling element is created during modeling, an instance for the corresponding 
class is created in the ontology. Thus, models for humans and machines are based 
on the same internal representation. 

Keywords Modeling, ontologies, metamodel, enterprise modeling, domain-specific 
modeling language 

1 Introduction 

Decision makers use models to understand and analyze a situation, to compare al-
ternatives and to find solutions. Business process models, for example, enable the 
identification of potential improvements and the communication of process variants 
with stakeholders. Enterprise models serve as a baseline for changing the enterprise. 
Engineers use models as blueprints for planning and construction. 

Models describe and represent the relevant aspects of a domain in a defined lan-
guage. There are many different kinds of modeling languages: graphical models, 
conceptual models, mathematical models, logical models. Even textual descriptions 
can serve as models. The choice of the modeling language depends on what the 
models is used for and who is using the model.  

General-purpose modeling languages such as UML have the advantage that they 
can be used to represent any kind of information. However, they have the disad-
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vantage that they do not guide people in modeling. People have difficulty concep-
tualizing the domain and different people might conceptualize the domain in differ-
ent ways.  

Domain-specific modeling languages, on the other hand, consist of modeling 
elements which have a pre-defined meaning that a domain expert can understand. 
Business process modeling languages, for example, are specialized for modeling 
the process flow using elements such as tasks and events and relationships to repre-
sent the order of the task execution. Domain-specific modeling languages reduce 
the degree of freedom for the modelers and thus support the understanding and reuse 
of models by different people. 

Models are typically designed for a specific purpose. There are a huge variety 
of domain-specific modeling languages and modeling tools. Business Process 
Model and Notation (BPMN) has been designed to provide a standard visualization 
mechanism for business processes, which are defined in an execution optimized 
business process language (OMG 2011). BPMN engines allow the deployment and 
execution of business processes. Besides, process models can also serve the pur-
poses of process optimization, governance, risk analysis and compliance manage-
ment. Process models designed for execution, however, are often not compatible 
with models serving these purposes, although they have an overlapping set of mod-
eling elements. Furthermore, there are typically specific tools for the various pur-
poses, each with its own modeling language. Consequently, processes have to be 
re-modeled several times. 

For a comprehensive view it would be beneficial to have modeling languages 
that serve several company-relevant issues such as decision-making, automation 
and compliance. Different applications can share or exchange models, or parts of 
them, and thus avoid re-modeling. As a prerequisite, the semantics of the modeling 
language has to be clearly defined. 

Humans use graphical models for communication and to identify potential for 
improvement. Fig. 1 shows an example of a business process model in BPMN 
(OMG 2011). Humans can recognize that there is a deadlock for a known customer 
in the customer lane and they can propose parallelization to check the formal and 
financial consequences, because there is no data dependency between these tasks.  

 
Fig. 1 Graphical business process model for human interpretation 
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In software engineering, graphical models of UML are widespread, e.g. using 
class diagrams for conceptual modeling. ArchiMate (The Open Group 2016) is a 
modeling language for enterprise architecture. 

While graphical and textual representations are well understood by humans, they 
are not adequate for machine interpretation. Formal models are required to be inter-
preted by software systems must be formal models. Business process improvement 
can be supported in this with software tools, with which models can be checked for 
consistency, KPIs can be measured and simulations can be performed. A typical 
approach is to have separate models for humans and machines (see Fig. 2): 

• Graphical notations which can easily be understood by humans are provided. 
• Formal models such as databases, mathematical models and program code are 

used for machine interpretation. 

 
Fig. 2 Typical modeling approach: separate models for human and machine interpretation 

The focus on machine-interpretable knowledge is known as knowledge engi-
neering (KE) and is distinguished from knowledge management (KM), which fo-
cuses on human-interpretable knowledge (Karagiannis and Woitsch 2010). How-
ever, the models used by humans and machines are not strictly separated. Humans 
create the models and then use machines for analysis. The results are then again 
presented to humans for interpretation. However, if humans and machines use dif-
ferent models, it is hard to maintain consistency of the models. The use of both 
graphical and formal models has two challenges: 

1. The semantics of the graphical and formal models must be identical. One 
way to achieve this is to define the semantics of both models in a formal 
language, which is known as semantic lifting (Azzini et al. 2013). 

2. If part of the reality is represented in both graphical and formal models, a 
change in any of the models must be mirrored in the others. 

Thus, a modeling language that can be interpreted by both humans and machines 
would be advantageous. This modeling language needs to be formal enough to be 
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interpreted by a machine and must have a graphical presentation layer, which facil-
itates interpretation and manipulation by humans.  

Fig. 3 depicts the basic elements of the ontology-based modeling approach, 
which satisfies these requirements. Entities of reality are represented in graphical 
models suited for humans and at the same time in a machine-interpretable formal 
model (i.e. in an ontology). Both models are deeply intertwined. The ontology pro-
vides a formal semantics of the modeling language (Hrgovcic et al. 2013; Kappel et 
al. 2006) such that related models are interpretable by machine.  

 

 
Fig. 3 Our proposal: integrated models for human and machine interpretation 

In our ontology-based metamodeling approach, we use ontologies to define the 
semantics of the modeling language in a formal model, which can be interpreted by 
a machine. A model engineer can represent the domain knowledge as an ontology 
with classes, relations and rules. To create a graphical modeling language, the clas-
ses can be extended by graphical notations, which can be used by the modeler to 
create models. Thus, the ontology represents the domain knowledge, which at the 
same time is the metamodel of a domain-specific modeling language. By making a 
graphical model, the modeler creates instances of ontology classes. Thus, models 
are formal with clear semantics. As a result, the ontology-based metamodeling ap-
proach achieves two goals: (1) the definition of domain-specific modeling lan-
guages with an unambiguous formal semantics, for which (2) the models can be 
interpreted both by humans and machines. 

2 State of the Art 

In the following section, we detail research on modeling languages, its formaliza-
tion for machine interpretation, and approaches to combine formal representation 
of models with models which are cognitively adequate for humans.  
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2.1 Modeling Languages 

According to Karagiannis and Kühn (Karagiannis and Kühn 2002) a modeling 
method consists of a modeling language and a modeling procedure, as well as mod-
eling mechanisms and algorithms. In the following, each of these three components 
is explained in the context of enterprise engineering. 

Metamodels are the basis for modeling tools and for the development of the 
modeling languages. They provide the syntax of a modeling language. A metamodel 
contains the class hierarchy and the properties representing the modeling elements 
as well as the relations between them (Jonkers et al. 2003). This corresponds to the 
so-called abstract syntax. The specification of the graphical notation for each mod-
eling element and relation corresponds to the concrete syntax. The latter should be 
cognitively adequate to ensure the users’ understanding of models that are built 
from it. The domain-specific conceptualization addresses this aspect by providing 
modeling elements that are tailored to a given domain. Fill and Karagiannis (2013) 
analyzed the conceptualization of modeling methods: They use the ADOxx meta-
modeling platform1 to investigate how to realize four selected functionalities of en-
terprise information systems to support user interaction, process-based optimiza-
tion, interfaces to other systems, and complex analyses.  

2.2 Machine Interpretability 

To gain its full potential, the purpose of modeling must go beyond transparency and 
communication, which is what graphical models provide humans with. Models 
should also be used for automation, and operations such as decision making, analy-
sis, adaptation, and evaluation. 

For automation purposes, model knowledge should be machine-interpretable or 
at least machine-readable. In business process automation, for instance, process 
models determine the workflow executed by the workflow engine. For decision-
making purposes, it is common practice to work with models, for example, as rep-
resented by the Decision Model and Notation (OMG 2016).  

In keeping with (Hinkelmann et al. 2016), we distinguish between machine-in-
terpretable models and machine-readable models by claiming that the former are 
represented in a format on which reasoning can be performed. Hence, machine-
interpretable models can turn passive data storage into an active device. A machine-
interpretable format can be expressed in logic-based languages such as ontologies. 
Different kinds of reasoning can be applied, depending on the expressivity of the 
ontology language. Ontologies expressed in the Resource Description Framework 
Schema (RDFS) (W3C 2014), for example, can be combined with semantic rules to 
draw new insights from  the already existing knowledge base (KB).  

                                                           
1 ADOxx is a commercial product and trademark of BOC AG. 
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2.3 Combining Human with Machine Interpretability 

In the field of information systems, the human interpretability of modeling refers to 
metamodels, whereas machine interpretability mainly refers to the formal semantic 
aspects of models, i.e. ontologies (Hinkelmann et al. 2016). Höfferer (2007) dis-
cusses the relationship between metamodels and ontologies by emphasizing that 
metamodels and ontologies are different but complementary concepts. Ontologies 
basically furnish both modeling language constructs and their instances with formal 
semantics (Dietz 2006; Kramler et al. 2006; Kappel et al. 2006). Metamodels on the 
other hand, mainly provide the syntax and graphical representation for those mod-
eling language constructs. Aßmann, Zschaler & Wagner (2006) assume that ontol-
ogies in the Semantic Web and models in model-driven engineering (MDE) were 
developed in isolation and investigate the role of ontologies, models, and metamod-
els to bridge the gap between the two communities. 

2.4 Semantic Lifting 

Semantic lifting is defined as “…the process of associating content items with suit-
able semantic objects as metadata to turn ‘unstructured’ content items into semantic 
knowledge resources” (Azzini et al. 2013). This approach requires the relationship 
between the human-interpretable and the machine-interpretable modeling lan-
guages to be defined (Hrgovcic et al. 2013).  

The metamodels for the human-interpretable graphical representations and the 
machine-interpretable metamodels, e.g. represented in an ontology, are strictly sep-
arated. To align them, formal and non-formal (meta)models are mapped by trans-
formation. 

Fig. 4 shows the conceptual architecture for semantic lifting. Different model 
types in the enterprise architecture are created which correspond to different meta-
models. These primarily define syntactical aspects as well as certain semantic as-
pects of model elements. The ontologies define the machine-interpretable semantics 
of the modeling concepts. In the literature, semantic lifting is also known as seman-
tic annotation (Liao et al. 2015; Fill et al. 2013). 

In these approaches, the ontologies are independent from the concepts of the hu-
man-interpretable, graphical languages. The ontology comprises class definitions 
which represent the formal semantics of modeling elements. Furthermore, it in-
cludes class definitions which serve to annotate models and model elements. The 
basis for interoperability is provided by linking model elements of the models and 
metamodels with ontology concepts.  

This approach has been described in and used, for example, in the European 
research projects LearnPAd (De Angelis et al. 2016) and CloudSocket. (Hinkel-
mann, Kurjakovic et at. 2016; Hinkelmann, Kritikos et al. 2016; Woitsch, Hinkel-
mann et al. 2016). 
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The drawback of this approach lies in the consistency of the semantics between 
(meta)models and their representation in ontologies. Keeping them separate tends 
to cause incompatible semantics. This mainly occurs if the project stakeholders do 
not agree among themselves on a common understanding of important terms be-
forehand, or if little attention is paid when changes occur, i.e. poor maintenance. 

 

 
Fig. 4 Metamodels for human-interpretable and machine-interpretable models, (Höfferer 2007) 

Having provided a brief overview of related work, we claim that human- and 
machine-interpretable models should become an integrated model in order to realize 
the full potential of modeling.  

3 Conceptual Solution of Ontology-based Metamodeling 

In order to avoid the inconsistency problem between (graphically represented) mod-
els and ontologies, a semantic metamodeling approach is proposed which merges 
the abstract syntax of metamodels with the semantics defined in the ontology. This 
means that the ontology is used to specify both the semantics and the abstract syn-
tax.  

The ontology is extended by a specification of the graphical notation. The dif-
ference to the transformation approach is that the semantics is expressed only once 
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for both human-interpretable and machine-interpretable models. The ontology-
based modeling can be regarded as a variant of the MOF metamodeling framework 
(OMG 2014) where UML is replaced by an ontology language as a metamodeling 
language. 

In the ontology-based metamodeling approach, the ontology itself is also the 
metamodel for the graphical modeling environment. Only the graphical notation for 
each concept is defined separately from the semantic description (see Fig. 5). A 
mapping is defined between concept definition and graphical definition (Nikles and 
Brander 2009). 

 

 
Fig. 5 Ontology-based metamodeling 

The semantics is in the ontology, which consists of classes, attributes, relations 
and constraints. The model layer of Fig. 5 is an instantiation of both semantics and 
related notations that resides in the metamodel layer. Thus, the model in the bottom 
layer benefits from both, a semantics that is machine-interpretable and a graphical 
notation that makes it human-interpretable. 

In addition, the ontology-based metamodeling approach fosters the adaptation 
of a modeling language to fit a specific domain. In order to have a common under-
standing of the term “adaptation” we refer to the work of Laurenzi et al. (Laurenzi 
et al. 2017), where the following operations were performed in the metamodel layer 
using existing modeling languages: 

• Identification of needed and unneeded concepts 
• Specialization/generalization of concepts 
• Restrictions on attribute values 
• Injection of constraints among concepts 
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Specializing/generalizing a concept can refer to both classes and relations. For 
example, the class “task” in BPMN generalizes the classes “user task”, “manual 
task”, “service task” and “business rule task”. These can then be further specialized. 
For example, “user task” can be specialized into “send electronic document”, “send 
package”, etc. An example for domain restrictions for attribute values is described 
by Hinkelmann et al. (2016), where an attribute that expresses the functionality of 
a cloud service can only have values from the APQC Process Classification Frame-
work (APQC 2014). Injection of constraints refers to the additional relations that 
can occur among modeling elements. These restrict the way concepts can be con-
nected in the models.  

In the literature, these operations refer to the actions that typically take place at 
the design time of Domain-Specific Modeling Languages (DSMLs) (Fowler 2011, 
Frank 2010; Gray et al. 2008; Mernik et al. 2005; van Deursen et al. 2000). DSMLs 
shift the complexity of modeling from the model layer (M) to the metamodel layer 
(MM) (see Fig. 6). In the context of our ontology-based metamodeling, ontology 
experts work in the metamodel layer to make the modeling easier for the language 
user. 

 

 
Fig. 6 Domain-specific conceptual modeling with an ontology-based metamodeling approach 

In the model layer (M), users make use of the constructs developed in the meta-
model layer (MM) to create models. In Fig. 7 we provide an explanatory example, 
already used by Emmenegger et al. (2016). We assume, for example, that the mod-
eling element “C1” reflects the class “Lane” of BPMN (OMG 2011), while “C2” 
reflects the class “Role” of the Organizational Model. By adding a relation “r” be-
tween the two modeling elements, we allow one or more instances of “Lane” to be 
connected with one or more instances of “Role”. This enables the language user to 
refer a specific lane to a particular role so that, for example, the role can be further 
specified in an organizational model.  
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Fig. 7 Two-tier approach, adapted from (Laurenzi et al. 2017) 

The degree of freedom in modeling in the model layer (also known as level 1) 
depends on the level of specificity of the modeling language (also called degree of 
semantics by Frank (2010)) inserted in the metamodel layer (also known as level 
2). The higher the level of specificity is, the more domain-specific is the modeling 
language. The UML class diagram, for example, provides a general-purpose meta-
model with a low specificity level. Hence, the language user can create and connect 
any classes without restrictions, i.e. the user has a high degree of freedom in the 
model layer. Such freedom may create ambiguous models, leading to the wrong 
interpretation of models or modeling the same reality differently, which can make 
the models questionable. Even worse, a low level of specificity can lead to nonsense 
models, inconsistency and wrong models. This is a critical issue, because, for ex-
ample, in the context of Model-Driven Development, it can lead to  

a) the creation of error-prone or unintended software, and   
b) quality issues such as incomplete requirements or poor implementa-

tion. 
The BPMN metamodel already provides a higher level of specificity than the 

UML class diagram. It contains  
a) a taxonomy of concepts (e.g. user task specifies task),  
b) attributes that might differ from concept to concept (e.g. task vs event), 

and  
c) constraints among concepts following the BPMN guidelines that allow 

the modeling of structured processes.  
For example, a start event initiates the process, an end event ends the process 

and one or more activities should occur between the two events. 
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Due to their higher level of specificity, DSMLs promise to enable domain ex-
perts to handle the designing and editing of models in a meaningful and less error-
prone way, and therefore support the production of high quality models (Kelly and 
Tolvanen 2008). Moreover, allowing the domain experts to deal directly with fa-
miliar language constructs makes the language easy to learn and improves its ap-
plicability (Hudak and Paul 1996). DMSLs offer the benefit of a high level of un-
derstanding of models among domain experts, fostering not only productivity in 
design time, but also the optimization phase, where pain points are rapidly identified 
and actions can be taken accordingly. 

One of the main challenges of DSMLs is to inject the metamodel with the ap-
propriate level of specificity. This challenge relates to the design of a DSML, which 
can be supported by a machine if the language is grounded with a formal semantics, 
i.e. an ontology-based metamodel. 

4 Implementation 

In this section, we present the implementation of the ontology-based metamod-
eling approach as it was developed in the European research project CloudSocket 
(Woitsch, Hinkelmann et al. 2016).  

4.1 The BPaaS Ontology 

The metamodel for the service selection, allocation and deployment is repre-
sented in the BPaaS Ontology. The ontology in Fig. 8 conceptualizes functional and 
non-functional specifications of a cloud service.  

 
Fig. 8 Part of the BPaaS Ontology developed in the European research project CloudSocket 
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Fig. 9 shows some of the attributes of the cloud service concept. The functional 
aspects specify functionalities of a cloud service. They relate to the hierarchy of the 
APQC Process Classification Framework (APQC 2014), using the relation “cloud-
ServiceHasAPQC”. In addition, cloud services functionalities are specified through 
actions and objects from a predefined taxonomy with the relations “cloudSer-
viceHasAction” and “cloudServiceHasObject”. This corresponds to the convention 
of BPMN to name activities using a verb (i.e. action) and a noun (i.e. object), e.g. 
“Send Invoice”.  

 
Fig. 9 The cloud service concept implemented in the BPaaS Ontology 

The model layer in Fig. 8 depicts the instances of the concepts in the metamodel 
layer. For example, APQC category, action and object are used to specify the func-
tionalities of the cloud service “InvoiceNinja”, i.e. “9.2.2.3 Transmit Billing Data 
to Customer”, “Send” and “Invoice”, respectively.  

Furthermore, from the BPaaS Ontology a cloud service can also be specified 
through non-functional aspects, for example availability and response time (see Fig 
8). These two refer to the performance category, which in turn is reported in the 
Service Level Objectives (SLOs) that is listed in the Cloud Service Level Agree-
ment Standardisation Guidelines (C-SIG 2014). Fig. 8 shows the conceptualization 
of the ”availability” and “response time” as subclasses of the “performance” con-
cept, which in turn is a subclass of the “SLO” concept. The bubbles containing val-
ues “99.999%” and “1ms” are instances of the classes “Availability” and “Re-
sponseTime”, respectively.  

The graphical notation for the modeling elements in the model layer are added 
after the ontology design that takes place in the metamodel layer. In the following, 
we describe two different types of graphical representations that were implemented 
for the same ontology-based metamodel.  
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4.2 Model-Based Representation Implemented in the 
Metamodeling Tool ADOxx  

The modeling language BPMN 2.0 was extended with the Service Description 
Model to specify both functional and non-functional aspects of a cloud service. The 
language extension was implemented in ADOxx. As Fig. 10 shows, each lane can 
be annotated with a cloud service description element, which is specified in the Ser-
vice Description Model. Specifications occur in the notebook. Fig. 11 shows the 
functional specifications, while Fig. 12 shows the non-functional specifications. 
The functional specifications in the notebook reflect the relations to APQC, Action 
and Object as defined in the BPaaS Ontology. Their values represent the instances 
in the model layer of Fig. 8. As soon as the notebook is saved, an ontology instance 
is created.  

 
Fig. 10 Extension of BPMN 2.0 implemented in ADOxx 

 
Fig. 11 Non-functional aspects of a cloud service implemented in ADOxx 
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Fig. 12 Non-functional aspects of a cloud service implemented in ADOxx 

4.3 Web-Based Representation 

Fig. 13 shows the representation of the cloud service (functional and non-func-
tional) specifications implemented in a web-based format. Instead of creating a 
graphical process model, the functional and non-functional requirements are speci-
fied in a web form. The web form is a human-oriented modeling language, which 
is used as an alternative to the graphical representation of the process using BPMN. 
Similar to the model-based approach of Section 4.2, all the specifications, including 
their values, become instances for the related ontology classes as soon as the web 
page is submitted. Hence, the instance model is formally grounded with an ontol-
ogy. Both the web-based and the model-based representations refer to the same on-
tology-based metamodel.  

5 Conclusion 

With ontology-based metamodels as described in this chapter it is possible to define 
the semantics of domain-specific modeling languages using ontologies. Models rep-
resented in such a modeling language are instances of ontology classes. Because of 
the formal representation, the models can be interpreted by software systems. On 
the other hand, the metamodels can be extended with graphical notations for the 
different modeling elements. Graphical modeling is more appropriate for humans 
than the creation of formal models. Thus, the ontology-based modeling approach 
allows for easy modeling using graphical notation and at the same time creates mod-
els that can be used for automation and machine-based interpretation. The ontology-
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based metamodeling was implemented by extending BPMN in a graphical model-
ing environment and as a web interface. 

In future research, a modeling tool will be developed that integrates modeling 
and metamodeling in a graphical interface. A knowledge engineer can extend the 
domain-specific modeling language with new modeling elements on the spot and 
use them immediately. 
 

 
Fig. 13 Graphical representation of cloud service specifications implemented in Angular 
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