
Learning Business Rules for Adaptive Process
Models

Hans Friedrich Witschel, Tuan Q. Nguyen, Knut Hinkelmann
Fachhochschule Nordwestschweiz FHNW

Olten, Switzerland
hansfriedrich.witschel@fhnw.ch, nguyen.quoctuan@students.fhnw.ch, knut.hinkelmann@fhnw.ch

Abstract—This work presents a new approach to handling
knowledge-intensive business processes in an adaptive, flexible
and accurate way. We propose to support processes by
executing a process skeleton, consisting of the most important
recurring activities of the process, through a workflow engine.
This skeleton should be kept simple. The corresponding
workflow is complemented by two features: firstly, a task
management tool through which workflow tasks are delivered
and that give human executors flexibility and freedom to adapt
tasks by adding subtasks and resources as required by the
context. And secondly, a component that learns business rules
from the log files of this task management and that will predict
subtasks and resources on the basis of knowledge from
previous executions. We present supervised and unsupervised
approaches for rule learning and evaluate both on a real
business process with 61 instances. Results are promising,
showing that meaningful rules can be learned even from this
comparatively small data set.

Keywords – business process intelligence; process mining;
knowledge work; workflow management

I. INTRODUCTION

Offering the best possible support for the execution of
core business processes is a mission-critical requirement for
many companies. Such support can be offered, e.g., through
workflow management systems (WfMS), which help to
automate process executions. The advantages of automating
business processes with WfMS consist in the increased
consistency, traceability and hence quality of process
executions as well as gains in efficiency.

WfMS [1] require a model of the business process; such
business process models are traditionally created in a top-
down way by modeling experts, an approach which brings
with it various problems:
 Agility: process models need to adapt changing

conditions. This is hard to achieve if modeling requires
an expert.

 Cost: modeling business processes is time-consuming,
especially if a great accuracy should be achieved.

 Accuracy: process models should be consistent with
reality in the sense that they either describe accurately
how a process is executed or – in the case of
automation through WfMS – that the execution really
follows the model (i.e., no “by-passes” occur). Such

consistency is almost never achieved because the cost
would be too high in many situations.

These problems are especially serious in processes which we
call knowledge-intensive, i.e., ones that involve complex
decisions at runtime (e.g. exceptional situations, highly
variable situations) and can include a wide variety of
resources depending on the context.

In this paper, we present an integrated approach to
modeling and managing business processes which addresses
the above problems through a combination of top-down
modeling – resulting in a simple process skeleton – with
bottom-up techniques: end-user contributions and automatic
learning of business rules.

The process skeleton includes what is stable – in most
business processes, even if they are very loosely structured
and highly knowledge-intensive, there exists a kernel of
tasks that always has to be executed. This skeleton is usually
easy to identify and can thus be modeled quickly and at low
cost.

Then, the skeleton is combined with business rules that
predict subtasks and resources based on the context (e.g. the
attributes of previous activities in the process) and on
historical user behavior. By observing user behavior, we
ensure both accuracy and agility: because they are based on
usage history, the rules reflect how the process is executed in
reality – and new rules can be learned at any time.

Thus, taken together, the process skeleton and the
business rules form an agile process model that is adaptive
and maintainable at low cost. It is the aim of this paper to
show that it can also be accurate, i.e. that useful business
rules can be learned (semi-)automatically to complement the
process skeleton. These rules are meant to support human
knowledge workers who execute a process – they can still
choose to ignore the resulting recommendations and act
according to their own experience.

In the rest of this paper, we will first examine related
work in section II and outline our specific contribution. After
giving some background regarding an existing approach that
we build on in section III, we will outline our method for
learning business rules in section IV, describe our
experimental setup for evaluating in section V and present
the results of that evaluation in section VI. Finally, section
VII concludes the paper.

II. RELATED WORK

In [2], three dimensions of change for business processes are
introduced:
 Dynamism: adapting the model (at design time) to

evolutions in the execution of a business process
 Adaptability: reacting to exceptional circumstances at

runtime
 Flexibility: being able to execute on a partially

specified model (where the full specification is made at
runtime)

The need for dynamism has been recognized by researchers a
long time ago and has resulted in the emergence of the new
research area of business process reengineering, see, e.g., [3].

The accuracy of process models which are created by
human experts is a related problem: the complexity of most
business processes often leads to discrepancies between the
model and reality [4]. Therefore, process mining has been
proposed as a means to discover process models from usage
data: traces of real process executions, e.g. recorded actions
in event logs, are the basis for learning process models
automatically [3][5]. Besides the discovery of process
models, checking the conformance of a model with traces of
real executions is another discipline in process mining [6].
Finally, van der Aalst [7] has proposed various ways of
enhancing process models, e.g. with information about
execution times and relationships between human executors.
Learning (decision tree) classifiers to predict decisions in the
case of choices is another kind of process model
enhancement [8]. It is related to our approach since a
decision tree can be represented as a set of business rules that
predict subsequent activities. In [9], the history of process
executions is used to learn a model that recommends
activities in a running process instance.

However, decision mining and process mining in general
focus exclusively on the control flow, i.e., activities of a
process model are treated as atomic units, their internal
structure, e.g., resources or subtasks, are not considered or
predicted. In [10], we have investigated how possible
subtasks of process activities can be recommended based on
the analysis of informal traces of work (email). However, in
that approach we did not build on an existing WfMS to
collect traces of process execution.

The challenges regarding adaptability and flexibility
result from the fact that the traditional distinction between
design time and run time in workflow management [11] can
be less strictly followed in cases where the flow of action
(traditionally modeled at design time) is largely determined
by input that is received only at runtime.

Modeling languages that are based on business rules (e.g.
[12]) have been claimed to be more flexible and expressive
than graphical models – in terms of flexibility, it is possible
to create partial process descriptions with business rules, and
the expressiveness of rules is higher because they can take
into consideration the run-time process context. Although
these advantages are confirmed by [13] in a comparative
evaluation of the two approaches, the authors of that study
also find that specifying workflows solely through business
rules has the drawback of requiring more technical

knowledge and being more difficult to understand and
maintain by humans than a graphical model.

Various other solutions have been put forward to achieve
flexibility: as discussed in [1] and [10], trying to model all
possible choices at design time is rarely possible and results
in complex and unwieldy models.

Therefore, combinations of process models and business
rules have been put forward. By separating the business logic
from the process logic and representing it as rules, the
complexity of process models can be reduced. The KISS
approach [15] combines semantically enhanced process
models with business rules to increase their flexibility. A
similar approach is taken in [1][14] where a combination of a
core process model (similar to our proposed skeleton) with
pockets of flexibility is proposed – in which predefined or
new process fragments are inserted into the core model at run
time via rules (contained in so-called build activities). But
again, this approach concentrates on the control flow, and
does not consider e.g. resources used in process activities.

Other approaches for ensuring flexibility in processes
consist in giving more freedom and responsibility to the
human executors of processes. Examples of such endeavours
are case handling [16] and task management approaches
based on task patterns [17][18]. The task pattern approach
relies on collaborative development of process knowledge. A
combination of process skeletons with pattern-based task
management is proposed in [19].

However, the idea of having at most a very coarse
process model (“flexibility by granularity” [2]) and leaving
details of process execution to humans is problematic since it
fails to adequately support these persons in their work. In
general, as pointed out in [9], as the flexibility of execution
increases, the support offered by process-aware information
systems usually decreases.

Finally, there are approaches that also propose to model
families of business processes on a coarse level and then
make them configurable such that they can be adapted to the
concrete needs of a situation or company [19][20]. The focus
of these approaches is, however, not so much on flexibility
for individual processes, but on the re-use of models of
recurring processes across companies.

A. Contribution

Our approach builds on and extends previous work as
follows: We start from the notion of a process skeleton,
similar to the core process model in [2]. That model is
deployed as a workflow, but its activities can be handled
flexibly by the executors in a task management framework
(see [17][19]) by adding resources and subtasks at their own
discretion. That handling is captured in an event log, which
serves as the basis for learning business rules that
recommend resources and subtasks in later process
executions. This learning approach is similar to decision
mining [8], but goes beyond it since it predicts task features,
not only the control flow.

All in all, our proposed approach combines the
advantages of previously introduced ones to respond to the
challenges mentioned earlier: It reduces the cost of

modeling since it only requires a rough process skeleton to
be deployed. Furthermore, it ensures flexibility and
adaptability by giving responsibility to humans (task
management) and triggering rules based on the context. On
the other hand, it offers adequate support to knowledge
workers through recommendations. By learning the rules
from real process executions, this approach also ensures the
accuracy of the resulting model.

III. BACKGROUND: THE KISSMIR APPROACH

As outlined in the previous section, this work builds on the
KISSmir system, as described in [19]. KISSmir is based on
a process skeleton that contains those activities of a business
process that are always executed. The process skeleton is
deployed as a workflow – human executors are assigned
tasks that they need to complete.

The tasks are loaded into a task management application
where they can be modified by adding resources (persons or
documents), notes, subtasks or statements of problems that
occur during execution.

Task executors are supported by recommendations of
resources, subtasks and problem/solution statements that
have been contributed by other persons during execution of
the same activity (see [19] for details).

Any modifications of tasks, e.g., addition of resources,
subtasks or problem statements, be it by copying from the
task pattern or manual creation, are logged by the system.

IV. LEARNING BUSINESS RULES

The learning of business rules that we propose in this work
is based on the KISSmir system logs. It consists in an initial
preprocessing, followed by either supervised or
unsupervised learning, as described in the following
subsections. Both rely on co-occurrence of attributes, e.g.
the fact that the presence of a certain problem (exceptional
situation) triggers a certain subtask to be executed. We thus
understand a business rule as an implication of the form A
→ B, meaning that the presence of the element A in a case
implies that B should also be present.

A. Preprocessing

The data from the KISSmir system logs is transformed into
feature vectors, each of which represents exactly one
process instance. Formally, a feature vector for a case c is
given by

Ԧܿ ൌ ሺܿଵ, … , ܿ, ,ଵݏ … …,ଵ,ݏ , , …,ଵݎ , ሻݎ
The attributes are derived as follows:
 ܿ1,… , ܿ݇ are attributes that describe the case as a

whole (process variables)
 1ݏ,… describe the subtasks that have been added to ݈ݏ

any of the activities of which the case consists. Each
attribute ݏ ∈ ሼ0,1ሽ denotes whether a given subtask
(from the set of all subtasks in the whole log) is
present in the given case (ݏ ൌ 1ሻ or not (ݏ ൌ 0).

 In the same way, 1,… , …,1ݎ and ݉ , describe the ݊ݎ
presence of problem statements () and resources (ݎ)
in a case.

Subtasks and problem statements are identified by their
name. Obviously, the same kind of (sub)task (resp.
problem) can be described by different names and it is thus
sometimes difficult to match the subtask names that
describe the same activity. On the other hand, subtasks are
frequently accepted recommendations, which ensures
consistent naming across process instances. The set of
features used is given by all resources, subtasks and
problem statements that actually occurred in the past, not
limited to any fixed or predetermined set.

B. Supervised learning

Supervised learning through classification consists in
predicting one value of a feature vector from some or all
values of the other attributes, i.e., we want to learn a
classifier that predicts the presence of a particular subtask s୧
in a given case, based on the presence of other subtasks,
resources and/or problems in the same case. This is
promising since often the presence of an exceptional
situation (as documented by problem statements) triggers
the execution of a subtask, or one subtask triggers another
etc.

1) Learning decision trees
Because of the temporal dependency between activities – as
given by the workflow – we do not use the full feature
vectors in each case: when we train a classifier for an
attribute, say subtask ݏ, we prune the feature vectors of all
training cases such that they only include the case attributes
ܿ, plus those subtask, problem and resource elements that
have been used in activities prior to or equal to the one to
which the current class attribute (ݏ in our example) belongs.
In our experiments, we used the Weka machine learning
library [22] and its implementation of the J48 decision tree
learner [23] – we loaded the feature vectors into the tool,
which then produced candidate decision trees out of them.

2) Selecting decision trees, deriving business rules
In a real-life scenario, most elements of feature vectors are
0, i.e., subtasks, resources etc. are used in only a few cases.
For those attributes that do not strongly depend on the
presence of other elements, this strong bias means that their
corresponding decision tree will consists of only one node
which is root and leaf at the same time and decides for a
value of 0 – i.e., the classifier predicts the absence of the
element in all cases. Obviously, these are not interesting
business rules.

Only attributes whose presence depends significantly on
others will result in a decision tree with more than one node.
Therefore, choosing all learned decision trees that have
more than one node is a simple, but – as we will see later –
effective approach for filtering the initial set of decision
trees.

Since each decision tree can be expressed as a set of
rules, we can easily derive our targeted business rules from

the resulting set of trees. We will see later that in practice,
most trees are not very deep (two or at most three levels),
such that the resulting rules are simple and human-readable.

C. Unsupervised learning

Mining association rules is another approach to derive
business rules which determine appropriate subtasks for
certain problems, i.e., we are looking for co-occurences of
problems and subtasks in process instances. For this, we
transform feature vectors representing the process instances
into transactions, where only the attributes with a value of 1
appear, say, e.g., {ܿଶ, ,ଷݏ ,ݏ .ସሽݎ

1) Mining associations
We then use the Apriori algorithm [24] from the Weka
library to derive association rules. Because of the known
weaknesses of approaches that use support and confidence –
confidence does not accurately measure the statistical
dependence between antecedent and consequence of a rule
[25] – we chose to additionally analyse the co-occurrence
patterns in the data using a likelihood ratio measure [26] that
is particularly reliable in cases where frequency distributions
are skewed (which is the case for our data set). For this
purpose, we used the software tinyCC1 which implements
the likelihood ratio measure for computing the significance
of co-occurrences of words in sentences of natural language
text. We therefore represented the transactions as
“sentences” where each sentence is formed of the subtasks,
resources or problems that are present in a given case – each
such element is a word of the sentence.

2) Selecting association rules
For the unsupervised variant of the rule learning, we need to
rely on thresholds to filter rules. In case of the Apriori
results, we can filter by confidence, in case of the tinyCC
results, we can filter by the likelihood ratio values. The
threshold needs to be set manually.

In both cases, we need to additionally discard rules that
point into the past, i.e., ones where the consequence of a
rule appears in an activity that occurs temporally before the
activity to which the antecedent of the rule belongs.

V. EXPERIMENTAL SETUP

Within the School of Business at our university, there are
two master programmes – “Business Information Systems”
(BIS) and “International Management” (IM) – that have a
very similar student selection process. The so-called
“matriculation process” for the two master programmes, i.e.,
the process of checking and deciding on student applications
and of communicating these decisions to applicants, forms
the context of our experiments.

For each of the two master programmes, there is one
secretary in the administration office (see the middle layer
of the process model below) who performs the majority of
activities within the student selection process.

The work of the two secretaries in the matriculation
process is supported by an implementation of KISSmir. In

1 http://wortschatz.uni-leipzig.de/cbiemann/software/TinyCC2.html

this evaluation, we have concentrated on the sub-process
“Check application” that consists of four sub-tasks as shown
in Figure 1 and that is performed by the secretaries alone.
We logged the execution of 61 instances of this process with
the KISSmir tool and then transformed the log data into
feature vectors as described above. In this case, the case
attributes were the previous degree of the applicant
(DEGREE) and her nationality (COUNTRY).
Table 1 shows statistics about the other attributes that
occurred in the 61 matriculation cases.

Regarding the number of resources, the statistics are
somewhat misleading since 61 of the 64 distinct resources
were attached to the tasks automatically by the workflow
and contain information about the applicant.
This means that there were only 3 distinct resources being
used. Since these were mutually exclusive, we created a
single attribute (called WEBNAME below) that had the title
of the resource chosen as value.

Figure 1. The matriculation process

TABLE 1. STATISTICS OF THE LOG DATA
Measure Value
Number of cases (process instances) 61
Number of subtasks added by secretaries 34
Number of distinct subtasks 16
Number of problems used 19
Number of distinct problems used 7
Number of resource attachments 314
Number of distinct resource attachments 64

Thus, including the two case attributes, there are 28
attributes in each feature vector (2 case attributes, 16
subtask attributes, 7 problem attributes and 1 resource
attribute).

VI. RESULTS

A. Supervised Learning

Classifiers are usually evaluated by measures such as
accuracy of area under the (ROC) curve (AUC). In our case,
however, we are not so much interested in the quality of the
classification, but rather in the quality of the model that is
learned – i.e., the decision trees. Because of the small scale
of our experiment and since we know the process rather
well, we were able to judge the degree to which the
extracted trees made sense.

By applying the procedure for extracting business rules
as described above in section 0, we found five non-trivial
decision trees. Three of them have only two levels. We will
thus describe them directly as rules where the antecedent of
the rule corresponds to a value of the root node of the
decision tree and the consequence of the rule describes the
value of the attribute that should be predicted. For each rule,
we add a short description that explains the rationale of the
rule in terms of the matriculation process. In each case, we
only present the “positive” variant, i.e., the variant that
predicts the presence, not the absence of the class attribute.
 Applicant has degree in a complete different area = 1

→ Ask the dean = 1. This rules predicts the presence
of the subtask “Ask the dean” (consequence) in cases
where an applicant had a degree that was definitely not
compatible with the requirements of the master
programme (e.g. the student had a Bachelor degree in
French language and applied for the International
Management master programme, antecedent). This
accurately describes the current practice of the
secretaries.

 COUNTRY = Other → Check anabin = 1. This rule
predicts the presence of the subtask “Check anabin” in
cases where the applicant is neither from an EU nor
from an EFTA country. Anabin is an information
platform where university degrees and accreditations
can be compared for equivalence. Hence, this rule
predicts that the platform should be consulted for
students from non-European/non-EFTA countries.

 Ask the student for a description of the financial
situation = 1 → Forward scholarship documents to
commission = 1. This rule predicts the presence of a
subtask – namely forwarding an applicant’s
scholarship application documents to a commission –
from the presence of another subtask, as given in the
antecedent. When a request for scholarship arrives, the
secretaries will first ask the student for a description of
his/her financial situation. When that description is
received, the documents will be forwarded to the
commission.

In addition to these simple rules, two three-level decision
trees were discovered. One of them is shown in Figure 2: its
leaf nodes (light grey boxes) contain the values of the
attribute WEBNAME. That attribute describes which of

three letter templates were chosen by the secretaries in their
last task – “Accept application formally”.

The tree should be read as follows: if a problem
statement is present that indicates that the Bachelor degree
of a student is still missing because the student is still
studying, the student can be accepted, but one needs to use a
special letter template in which the applicant is asked to
hand in the certificate as soon as (s)he finishes his/her
studies. If this is not the case, but the problem “Applicant
has degree in complete different area” is present, a letter
template should be used in which the student is informed
that (s)he needs to take part in a so-called pre-master course
to catch up with important foundations for their studies.

Only if none of the two problem statements is present,
the standard letter template will be used. Although this tree
is largely correct, the two attributes are actually
independent, i.e., theoretically – yet very improbably – both
could occur together.

Figure 2. Decision tree for the attribute WEBNAME in the activity “Accept

application formally”.

Unsupervised learningTable 2 shows the set of rules
extracted with tinyCC using a likelihood ratio threshold of
10.0 and filtered by temporal consistency. They are to be
read from left to right; the letters in brackets behind each
attribute indicate whether it is a case attribute (c), a subtask
(s), problem (p) or resource (r).

Some of these rules – numbers 1, 3 and 6 – are also
extracted with supervised learning. The rest can be divided
into useful additional rules (4 and 8, e.g., rule 4 will remind
the secretaries to forward documents to the commission
when a scholarship is requested) and over-generalisations
(rules 2, 5 and 7, e.g., rule 2: checking the result of an
interview with the student does not always result in using
the acceptance letter that notifies about pre-master studies).

All in all, unsupervised learning produces slightly more
rules, including more useful rules, at the cost of some noise.

VII. CONCLUSION AND FUTURE WORK

We have presented an approach to flexibly support business
processes and to make process models more accurate by
learning business rules. The approach starts from a simple
process skeleton which is executed through a workflow
engine. Human executors are given freedom and support to
adapt tasks to their needs. Finally, the log files of this
application are evaluated to learn business rules, which can
be incorporated into the workflow using a rule engine to
recommend subtasks in future process executions.

We have experimentally compared a supervised and an
unsupervised approach on a real-life business process and
found that both approaches yield meaningful rules even with
a small training set. The supervised approach was more
reliable, the unsupervised approach had higher recall.

In the future, we plan to implement our proposed
approach in an environment with a larger number of
participants and cases to test its scalability.

REFERENCES

[1] W.M.P. v. d. Aalst and K. van Hee, Workflow Management:
Models Methods, and Systems. MIT Press, 2002.

[2] S. Sadiq, W. Sadiq, and M. Orlowska, “Pockets of
Flexibility in Workflow Specifications,” in Proceedings of
ER’01, 2001, pp. 513 - 526.

[3] K. D. Swenson and K. Irwin, “Workflow technology: trade-
offs for business process re-engineering,” in Proceedings of
COCS 95, 1995, pp. 22-29.

[4] W. M. P. van der Aalst, W. M. . van der Aalst, A. J. M. .
Weijter, and L. Maruster, “Workflow Mining: Discovering
process models from event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, 2003.

[5] J. E. Cook and A. L. Wolf, “Discovering models of software
processes from event-based data,” ACM Trans. Softw. Eng.
Methodol., vol. 7, no. 3, pp. 215-249, 1998.

[6] A. Rozinat and W. M. P. van der Aalst, “Conformance
checking of processes based on monitoring real behavior,”
Information Systems, vol. 33, no. 1, pp. 64-95, Mar. 2008.

[7] W. M. P. van der Aalst, Process Mining: Discovery,
Conformance and Enhancement of Business Processes.
Springer Verlag, 2011.

[8] A. Rozinat and W. M. P. van der Aalst, “Decision Mining in
Business Processes,” 2006.

[9] H. Schonenberg, B. Weber, B. Dongen, and W. Aalst,
“Supporting Flexible Processes through Recommendations
Based on History,” in Proc. of BPM’08, 2008, pp. 51-66.

[10] S. Brander et al., “Refining Process Models through the
Analysis of Informal Work Practice,” in 9th International

Conference on Business Process Management, vol. 6896, S.
Rinderle-Ma, F. Toumani, and K. Wolf, Eds. Berlin,
Heidelberg: Springer Berlin / Heidelberg, 2011, pp. 116-131.

[11] D. Hollingsworth, “The workflow reference model.” The
Workflow Coalition, 1993.

[12] J. Bae, H. Bae, S.-H. Kang, and Y. Kim, “Automatic control
of workflow processes using ECA rules,” IEEE
Transactions on Knowledge and Data Engineering, vol. 16,
no. 8, pp. 1010-1023, Aug. 2004.

[13] R. Lu and S. Sadiq, “A survey of comparative business
process modeling approaches,” in Proc. of BIS'07, 2007.

[14] S. Sadiq, M. Orlowska, and W. Sadiq, “Specification and
validation of process constraints for flexible workflows,”
Information Systems, vol. 30, no. 5, pp. 349-378, Jul. 2005.

[15] D. Feldkamp, K. Hinkelmann, and B. Thönssen, “KISS -
Knowledge-Intensive Service Support: An Approach for
Agile Process Management,” in RuleML, 2007, pp. 25-38.

[16] W. M. P. van der Aalst, W. M. . van der Aalst, M. Weske,
and D. Grünbauer, “Case Handling: A New Paradigm for
Business Process Support,” Data and Knowledge
Engineering, vol. 53, 2005.

[17] E. Ong, O. Grebner, and U. V. Riss, “Pattern-based task
management: Pattern lifecycle and knowledge
management,” in Proc. of WM’07), 2007, pp. 357-367.

[18] B. Schmidt and U. V. Riss, “Task patterns as means to
experience sharing,” in Proceedings of ICWL’09, 2009, pp.
353-362.

[19] H. F. Witschel et al., “A Collaborative Approach to
Maturing Process-Related Knowledge,” in Proc. of BPM’10,
2010, vol. 6336, pp. 343-358.

[20] M. La Rosa, M. Dumas, A.H.M. ter Hofstede, and J.
Mendling, “Configurable multi-perspective business process
models,” Information Systems, vol. 36, no. 2, pp. 313-340,
2011.

[21] I. Montero, J. Pena, and A. Ruiz-Cortes, “From Feature
Models to Business Processes,” in SCC’08, 2008, pp. 605-
608.

[22] “Weka.” [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka. [Accessed: 18-Jun-
2012].

[23] R. Qinlan, C4.5: Programs for Machine Learning. San
Mateo, CA: Morgan Kaufmann Publishers, 1993.

[24] R. Agrawal, T. Imielinski, and A. Swami, “Mining
association rules between sets of items in large databases,”
in Proceedings of ACM SIGMOD, 1993.

[25] S. Brin, R. Motwani, and C. Silverstein, “Beyond market
baskets: generalizing association rules to correlations,” in
Proc. of ACM SIGMOD, 1997.

[26] T. Dunning, “Accurate Methods for the Statistics of Surprise
and Coincidence,” Computational Linguistics, vol. 19, no. 1,
1993.

TABLE 2. ASSOCIATIONS OF ATTRIBUTES EXTRACTED USING TINYCC
Nr Attribute 1 Attribute 2 Sig
1 Applicant has degree in a complete different area (p) Ask the dean (s) 26.55
2 Check interview result (s) Acceptance Letter (Additional Studies) (r) 18.63
3 Bachelor degree is still missing because the student is still studying (p) Acceptance Letter (BSc Graduates) (r) 17.74
4 How to handle Scholarship requests (p) Forward Scholarship Documents To Commission (s) 17.39
5 Ask The Dean (s) Acceptance Letter (Additional Studies) (r) 15.34
6 Applicant has degree in a complete different area (p) Acceptance Letter (Additional Studies) (r) 10.8
7 Ask The Dean (s) Check interview result (s) 10.78
8 iso3166#Other (c) Anabin (r) 10.36

