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Abstract—This work presents a new approach to handling 
knowledge-intensive business processes in an adaptive, flexible 
and accurate way. We propose to support processes by 
executing a process skeleton, consisting of the most important 
recurring activities of the process, through a workflow engine. 
This skeleton should be kept simple. The corresponding 
workflow is complemented by two features: firstly, a task 
management tool through which workflow tasks are delivered 
and that give human executors flexibility and freedom to adapt 
tasks by adding subtasks and resources as required by the 
context. And secondly, a component that learns business rules 
from the log files of this task management and that will predict 
subtasks and resources on the basis of knowledge from 
previous executions. We present supervised and unsupervised 
approaches for rule learning and evaluate both on a real 
business process with 61 instances. Results are  promising, 
showing that meaningful rules can be learned even from this 
comparatively small data set. 

Keywords – business process intelligence; process mining; 
knowledge work; workflow management 

I.  INTRODUCTION 

Offering the best possible support for the execution of 
core business processes is a mission-critical requirement for 
many companies. Such support can be offered, e.g., through 
workflow management systems (WfMS), which help to 
automate process executions. The advantages of automating 
business processes with WfMS consist in the increased 
consistency, traceability and hence quality of process 
executions as well as gains in efficiency.  

WfMS [1] require a model of the business process; such 
business process models are traditionally created in a top-
down way by modeling experts, an approach which brings 
with it various problems: 
 Agility: process models need to adapt changing 

conditions. This is hard to achieve if modeling requires 
an expert. 

 Cost: modeling business processes is time-consuming, 
especially if a great accuracy should be achieved. 

 Accuracy: process models should be consistent with 
reality in the sense that they either describe accurately 
how a process is executed or – in the case of 
automation through WfMS – that the execution really 
follows the model (i.e., no “by-passes” occur). Such 

consistency is almost never achieved because the cost 
would be too high in many situations. 

These problems are especially serious in processes which we 
call knowledge-intensive, i.e., ones that involve complex 
decisions at runtime (e.g. exceptional situations, highly 
variable situations) and can include a wide variety of 
resources depending on the context. 

In this paper, we present an integrated approach to 
modeling and managing business processes which addresses 
the above problems through a combination of top-down 
modeling – resulting in a simple process skeleton – with 
bottom-up techniques: end-user contributions and automatic 
learning of business rules.  

The process skeleton includes what is stable – in most 
business processes, even if they are very loosely structured 
and highly knowledge-intensive, there exists a kernel of 
tasks that always has to be executed. This skeleton is usually 
easy to identify and can thus be modeled quickly and at low 
cost.  

Then, the skeleton is combined with business rules that 
predict subtasks and resources based on the context (e.g. the 
attributes of previous activities in the process) and on 
historical user behavior. By observing user behavior, we 
ensure both accuracy and agility: because they are based on 
usage history, the rules reflect how the process is executed in 
reality – and new rules can be learned at any time. 

Thus, taken together, the process skeleton and the 
business rules form an agile process model that is adaptive 
and maintainable at low cost. It is the aim of this paper to 
show that it can also be accurate, i.e. that useful business 
rules can be learned (semi-)automatically to complement the 
process skeleton. These rules are meant to support human 
knowledge workers who execute a process – they can still 
choose to ignore the resulting recommendations and act 
according to their own experience. 

In the rest of this paper, we will first examine related 
work in section II and outline our specific contribution. After 
giving some background regarding an existing approach that 
we build on in section III, we will outline our method for 
learning business rules in section IV, describe our 
experimental setup for evaluating in section V and present 
the results of that evaluation in section VI. Finally, section 
VII concludes the paper. 



II. RELATED WORK 

In [2], three dimensions of change for business processes are 
introduced:  
 Dynamism: adapting the model (at design time) to 

evolutions in the execution of a business process 
 Adaptability: reacting to exceptional circumstances at 

runtime 
 Flexibility: being able to execute on a partially 

specified model (where the full specification is made at 
runtime) 

The need for dynamism has been recognized by researchers a 
long time ago and has resulted in the emergence of the new 
research area of business process reengineering, see, e.g., [3]. 

The accuracy of process models which are created by 
human experts is a related problem: the complexity of most 
business processes often leads to discrepancies between the 
model and reality [4]. Therefore, process mining has been 
proposed as a means to discover process models from usage 
data: traces of real process executions, e.g. recorded actions 
in event logs, are the basis for learning process models 
automatically [3][5]. Besides the discovery of process 
models, checking the conformance of a model with traces of 
real executions is another discipline in process mining [6]. 
Finally, van der Aalst [7] has proposed various ways of 
enhancing process models, e.g. with information about 
execution times and relationships between human executors. 
Learning (decision tree) classifiers to predict decisions in the 
case of choices is another kind of process model 
enhancement [8]. It is related to our approach since a 
decision tree can be represented as a set of business rules that 
predict subsequent activities. In [9], the history of process 
executions is used to learn a model that recommends 
activities in a running process instance.  

However, decision mining and process mining in general 
focus exclusively on the control flow, i.e., activities of a 
process model are treated as atomic units, their internal 
structure, e.g., resources or subtasks, are not considered or 
predicted. In [10], we have investigated how possible 
subtasks of process activities can be recommended based on 
the analysis of informal traces of work (email). However, in 
that approach we did not build on an existing WfMS to 
collect traces of process execution. 

The challenges regarding adaptability and flexibility 
result from the fact that the traditional distinction between 
design time and run time in workflow management [11] can 
be less strictly followed in cases where the flow of action 
(traditionally modeled at design time) is largely determined 
by input that is received only at runtime. 

Modeling languages that are based on business rules (e.g. 
[12]) have been claimed to be more flexible and expressive 
than graphical models – in terms of flexibility, it is possible 
to create partial process descriptions with business rules, and 
the expressiveness of rules is higher because they can take 
into consideration the run-time process context. Although 
these advantages are confirmed by [13] in a comparative 
evaluation of the two approaches, the authors of that study 
also find that specifying workflows solely through business 
rules has the drawback of requiring more technical 

knowledge and being more difficult to understand and 
maintain by humans than a graphical model. 

Various other solutions have been put forward to achieve 
flexibility: as discussed in [1] and [10], trying to model all 
possible choices at design time is rarely possible and results 
in complex and unwieldy models. 

Therefore, combinations of process models and business 
rules have been put forward. By separating the business logic 
from the process logic and representing it as rules, the 
complexity of process models can be reduced. The KISS 
approach [15] combines semantically enhanced process 
models with business rules to increase their flexibility. A 
similar approach is taken in [1][14] where a combination of a 
core process model (similar to our proposed skeleton) with 
pockets of flexibility is proposed – in which predefined or 
new process fragments are inserted into the core model at run 
time via rules (contained in so-called build activities). But 
again, this approach concentrates on the control flow, and 
does not consider e.g. resources used in process activities. 

Other approaches for ensuring flexibility in processes 
consist in giving more freedom and responsibility to the 
human executors of processes. Examples of such endeavours 
are case handling [16] and task management approaches 
based on task patterns [17][18]. The task pattern approach 
relies on collaborative development of process knowledge. A 
combination of process skeletons with pattern-based task 
management is proposed in [19].  

However, the idea of having at most a very coarse 
process model (“flexibility by granularity” [2]) and leaving 
details of process execution to humans is problematic since it 
fails to adequately support these persons in their work. In 
general, as pointed out in [9], as the flexibility of execution 
increases, the support offered by process-aware information 
systems usually decreases. 

Finally, there are approaches that also propose to model  
families of business processes on a coarse level and then 
make them configurable such that they can be adapted to the 
concrete needs of a situation or company [19][20]. The focus 
of these approaches is, however, not so much on flexibility 
for individual processes, but on the re-use of models of 
recurring processes across companies. 

A. Contribution 

Our approach builds on and extends previous work as 
follows: We start from the notion of a process skeleton, 
similar to the core process model in [2]. That model is 
deployed as a workflow, but its activities can be handled 
flexibly by the executors in a task management framework 
(see [17][19]) by adding resources and subtasks at their own 
discretion. That handling is captured in an event log, which 
serves as the basis for learning business rules that 
recommend resources and subtasks in later process 
executions. This learning approach is similar to decision 
mining [8], but goes beyond it since it predicts task features, 
not only the control flow. 

All in all, our proposed approach combines the 
advantages of previously introduced ones to respond to the 
challenges mentioned earlier: It reduces the cost of 



modeling since it only requires a rough process skeleton to 
be deployed. Furthermore, it ensures flexibility and 
adaptability by giving responsibility to humans (task 
management) and triggering rules based on the context. On 
the other hand, it offers adequate support to knowledge 
workers through recommendations. By learning the rules 
from real process executions, this approach also ensures the 
accuracy of the resulting model.  

III. BACKGROUND: THE KISSMIR APPROACH 

As outlined in the previous section, this work builds on the 
KISSmir system, as described in [19]. KISSmir is based on 
a process skeleton that contains those activities of a business 
process that are always executed. The process skeleton is 
deployed as a workflow – human executors are assigned 
tasks that they need to complete.  

The tasks are loaded into a task management application 
where they can be modified by adding resources (persons or 
documents), notes, subtasks or statements of problems that 
occur during execution.  

Task executors are supported by recommendations of 
resources, subtasks and problem/solution statements that 
have been contributed by other persons during execution of 
the same activity (see [19] for details). 

Any modifications of tasks, e.g., addition of resources, 
subtasks or problem statements, be it by copying from the 
task pattern or manual creation, are logged by the system. 

IV. LEARNING BUSINESS RULES 

The learning of business rules that we propose in this work 
is based on the KISSmir system logs. It consists in an initial 
preprocessing, followed by either supervised or 
unsupervised learning, as described in the following 
subsections. Both rely on co-occurrence of attributes, e.g. 
the fact that the presence of a certain problem (exceptional 
situation) triggers a certain subtask to be executed. We thus 
understand a business rule as an implication of the form A 
→ B, meaning that the presence of the element A in a case 
implies that B should also be present. 

A. Preprocessing 

The data from the KISSmir system logs is transformed into 
feature vectors, each of which represents exactly one 
process instance. Formally, a feature vector for a case c is 
given by 

Ԧܿ ൌ ሺܿଵ, … , ܿ, ,ଵݏ … …,ଵ,ݏ , , …,ଵݎ ,  ሻݎ
The attributes are derived as follows: 
 ܿ1,… , ܿ݇  are attributes that describe the case as a 

whole (process variables) 
 1ݏ,…  describe the subtasks that have been added to ݈ݏ

any of the activities of which the case consists. Each 
attribute ݏ ∈ ሼ0,1ሽ  denotes whether a given subtask 
(from the set of all subtasks in the whole log) is 
present in the given case (ݏ ൌ 1ሻ or not (ݏ ൌ 0).  

 In the same way, 1,… , …,1ݎ and ݉ ,  describe the ݊ݎ
presence of problem statements () and resources (ݎ) 
in a case. 

Subtasks and problem statements are identified by their 
name. Obviously, the same kind of (sub)task (resp. 
problem) can be described by different names and it is thus 
sometimes difficult to match the subtask names that 
describe the same activity. On the other hand, subtasks are 
frequently accepted recommendations, which ensures 
consistent naming across process instances. The set of 
features used is given by all resources, subtasks and 
problem statements that actually occurred in the past, not 
limited to any fixed or predetermined set. 

B. Supervised learning 

Supervised learning through classification consists in 
predicting one value of a feature vector from some or all 
values of the other attributes, i.e.,  we want to learn a 
classifier that predicts the presence of a particular subtask s୧ 
in a given case, based on the presence of other subtasks, 
resources and/or problems in the same case. This is 
promising since often the presence of an exceptional 
situation (as documented by problem statements) triggers 
the execution of a subtask, or one subtask triggers another 
etc. 

1) Learning decision trees 
Because of the temporal dependency between activities – as 
given by the workflow – we do not use the full feature 
vectors in each case: when we train a classifier for an 
attribute, say subtask ݏ, we prune the feature vectors of all 
training cases such that they only include the case attributes 
ܿ, plus those subtask, problem and resource elements that 
have been used in activities prior to or equal to the one to 
which the current class attribute (ݏ in our example) belongs. 
In our experiments, we used the Weka machine learning 
library [22] and its implementation of the J48 decision tree 
learner [23] – we loaded the feature vectors into the tool, 
which then produced candidate decision trees out of them. 

2) Selecting decision trees, deriving business rules 
In a real-life scenario, most elements of feature vectors are 
0, i.e., subtasks, resources etc. are used in only a few cases. 
For those attributes that do not strongly depend on the 
presence of other elements, this strong bias means that their 
corresponding decision tree will consists of only one node 
which is root and leaf at the same time and decides for a 
value of 0 – i.e., the classifier predicts the absence of the 
element in all cases. Obviously, these are not interesting 
business rules.  

Only attributes whose presence depends significantly on 
others will result in a decision tree with more than one node. 
Therefore, choosing all learned decision trees that have 
more than one node is a simple, but – as we will see later – 
effective approach for filtering the initial set of decision 
trees. 

Since each decision tree can be expressed as a set of 
rules, we can easily derive our targeted business rules from 



the resulting set of trees. We will see later that in practice, 
most trees are not very deep (two or at most three levels), 
such that the resulting rules are simple and human-readable. 

C. Unsupervised learning 

Mining association rules is another approach to derive 
business rules which determine appropriate subtasks for 
certain problems, i.e., we are looking for co-occurences of 
problems and subtasks in process instances. For this, we 
transform feature vectors representing the process instances 
into transactions, where only the attributes with a value of 1 
appear, say, e.g., {ܿଶ, ,ଷݏ ,ݏ   .ସሽݎ

1) Mining associations 
We then use the Apriori algorithm [24] from the Weka 
library to derive association rules. Because of the known 
weaknesses of approaches that use support and confidence – 
confidence does not accurately measure the statistical 
dependence between antecedent and consequence of a rule 
[25] – we chose to additionally analyse the co-occurrence 
patterns in the data using a likelihood ratio measure [26] that 
is particularly reliable in cases where frequency distributions 
are skewed (which is the case for our data set). For this 
purpose, we used the software tinyCC1 which implements 
the likelihood ratio measure for computing the significance 
of co-occurrences of words in sentences of natural language 
text. We therefore represented the transactions as 
“sentences” where each sentence is formed of the subtasks, 
resources or problems that are present in a given case – each 
such element is a word of the sentence. 

2) Selecting association rules 
For the unsupervised variant of the rule learning, we need to 
rely on thresholds to filter rules. In case of the Apriori 
results, we can filter by confidence, in case of the tinyCC 
results, we can filter by the likelihood ratio values. The 
threshold needs to be set manually.  

In both cases, we need to additionally discard rules that 
point into the past, i.e., ones where the consequence of a 
rule appears in an activity that occurs temporally before the 
activity to which the antecedent of the rule belongs.  

V. EXPERIMENTAL SETUP 

Within the School of Business at our university, there are 
two master programmes – “Business Information Systems” 
(BIS) and “International Management” (IM) – that have a 
very similar student selection process. The so-called 
“matriculation process” for the two master programmes, i.e., 
the process of checking and deciding on student applications 
and of communicating these decisions to applicants, forms 
the context of our experiments.  

For each of the two master programmes, there is one 
secretary in the administration office (see the middle layer 
of the process model below) who performs the majority of 
activities within the student selection process.  

The work of the two secretaries in the matriculation 
process is supported by an implementation of KISSmir. In 

                                                           
1 http://wortschatz.uni-leipzig.de/cbiemann/software/TinyCC2.html 

this evaluation, we have concentrated on the sub-process 
“Check application” that consists of four sub-tasks as shown 
in Figure 1 and that is performed by the secretaries alone. 
We logged the execution of 61 instances of this process with 
the KISSmir tool and then transformed the log data into 
feature vectors as described above. In this case, the case 
attributes were the previous degree of the applicant 
(DEGREE) and her nationality (COUNTRY). 
Table 1 shows statistics about the other attributes that 
occurred in the 61 matriculation cases. 

Regarding the number of resources, the statistics are 
somewhat misleading since 61 of the 64 distinct resources 
were attached to the tasks automatically by the workflow 
and contain information about the applicant. 
This means that there were only 3 distinct resources being 
used. Since these were mutually exclusive, we created a 
single attribute (called WEBNAME below) that had the title 
of the resource chosen as value. 
 

 
Figure 1. The matriculation process 

TABLE 1. STATISTICS OF THE LOG DATA 
Measure Value 
Number of cases (process instances) 61 
Number of subtasks added by secretaries 34 
Number of distinct subtasks 16 
Number of problems used 19 
Number of distinct problems used 7 
Number of resource attachments 314 
Number of distinct resource attachments 64 

 
Thus, including the two case attributes, there are 28 
attributes  in each feature vector (2 case attributes, 16 
subtask attributes, 7 problem attributes and 1 resource 
attribute). 



VI. RESULTS 

A. Supervised Learning 

Classifiers are usually evaluated by measures such as 
accuracy of area under the (ROC) curve (AUC). In our case, 
however, we are not so much interested in the quality of the 
classification, but rather in the quality of the model that is 
learned – i.e., the decision trees. Because of the small scale 
of our experiment and since we know the process rather 
well, we were able to judge the degree to which the 
extracted trees made sense. 

By applying the procedure for extracting business rules 
as described above in section 0, we found five non-trivial 
decision trees. Three of them have only two levels. We will 
thus describe them directly as rules where the antecedent of 
the rule corresponds to a value of the root node of the 
decision tree and the consequence of the rule describes the 
value of the attribute that should be predicted. For each rule, 
we add a short description that explains the rationale of the 
rule in terms of the matriculation process. In each case, we 
only present the “positive” variant, i.e., the variant that 
predicts the presence, not the absence of the class attribute. 
 Applicant has degree in a complete different area = 1 

→ Ask the dean = 1. This rules predicts the presence 
of the subtask “Ask the dean” (consequence) in cases 
where an applicant had a degree that was definitely not 
compatible with the requirements of the master 
programme (e.g. the student had a Bachelor degree in 
French language and applied for the International 
Management master programme, antecedent). This 
accurately describes the current practice of the 
secretaries. 

 COUNTRY = Other → Check anabin = 1. This rule 
predicts the presence of the subtask “Check anabin” in 
cases where the applicant is neither from an EU nor 
from an EFTA country. Anabin is an information 
platform where university degrees and accreditations 
can be compared for equivalence. Hence, this rule 
predicts that the platform should be consulted for 
students from non-European/non-EFTA countries. 

 Ask the student for a description of the financial 
situation = 1 → Forward scholarship documents to 
commission = 1.  This rule predicts the presence of a 
subtask – namely forwarding an applicant’s 
scholarship application documents to a commission – 
from the presence of another subtask, as given in the 
antecedent. When a request for scholarship arrives, the 
secretaries will first ask the student for a description of 
his/her financial situation. When that description is 
received, the documents will be forwarded to the 
commission. 

In addition to these simple rules, two three-level decision 
trees were discovered. One of them is shown in Figure 2: its 
leaf nodes (light grey boxes) contain the values of the 
attribute WEBNAME. That attribute describes which of 

three letter templates were chosen by the secretaries in their 
last task – “Accept application formally”. 

The tree should be read as follows: if a problem 
statement is present that indicates that the Bachelor degree 
of a student is still missing because the student is still 
studying, the student can be accepted, but one needs to use a 
special letter template in which the applicant is asked to 
hand in the certificate as soon as (s)he finishes his/her 
studies. If this is not the case, but the problem “Applicant 
has degree in complete different area” is present, a letter 
template should be used in which the student is informed 
that (s)he needs to take part in a so-called pre-master course 
to catch up with important foundations for their studies. 

Only if none of the two problem statements is present, 
the standard letter template will be used. Although this tree 
is largely correct, the two attributes are actually 
independent, i.e., theoretically – yet very improbably – both 
could occur together. 

 
Figure 2. Decision tree for the attribute WEBNAME in the activity “Accept 

application formally”. 

Unsupervised learningTable 2 shows the set of rules 
extracted with tinyCC using a likelihood ratio threshold of 
10.0 and filtered by temporal consistency. They are to be 
read from left to right; the letters in brackets behind each 
attribute indicate whether it is a case attribute (c), a subtask 
(s), problem (p) or resource (r). 

Some of these rules – numbers 1, 3 and 6 – are also 
extracted with supervised learning. The rest can be divided 
into useful additional rules (4 and 8, e.g., rule 4 will remind 
the secretaries to forward documents to the commission 
when a scholarship is requested) and over-generalisations 
(rules 2, 5 and 7, e.g., rule 2: checking the result of an 
interview with the student does not always result in using 
the acceptance letter that notifies about pre-master studies).  

All in all, unsupervised learning produces slightly more 
rules, including more useful rules, at the cost of some noise. 



VII. CONCLUSION AND FUTURE WORK 

We have presented an approach to flexibly support  business 
processes and to make process models more accurate by 
learning business rules.   The approach starts from a simple 
process skeleton which is executed through a workflow 
engine. Human executors are given freedom and support to 
adapt tasks to their needs. Finally, the log files of this 
application are evaluated to learn business rules, which can 
be incorporated into the workflow using a rule engine to 
recommend subtasks in future process executions. 

We have experimentally compared a supervised and an 
unsupervised approach on a real-life business process and 
found that both approaches yield meaningful rules even with 
a small training set. The supervised approach was more 
reliable, the unsupervised approach had higher recall. 

In the future, we plan to implement our proposed 
approach in an environment with a larger number of 
participants and cases to test its scalability. 
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1 Applicant has degree in a complete different area (p)  Ask the dean (s) 26.55 
2 Check interview result (s) Acceptance Letter (Additional Studies) (r) 18.63 
3 Bachelor degree is still missing because the student is still studying (p) Acceptance Letter (BSc Graduates) (r) 17.74
4 How to handle Scholarship requests (p) Forward Scholarship Documents To Commission (s) 17.39 
5 Ask The Dean (s) Acceptance Letter (Additional Studies) (r) 15.34 
6 Applicant has degree in a complete different area (p) Acceptance Letter (Additional Studies) (r) 10.8 
7 Ask The Dean (s) Check interview result (s) 10.78 
8 iso3166#Other (c) Anabin (r) 10.36 


