2.2 Classical Information Retrieval Models

- Boolean Model
- Vectorspace Model

2.2.1 The Boolean Model Retrieval Model

- Binary index: Terms are either present or absent. Thus, \(w_i \in \{0, 1\} \)

- Queries are specified as Boolean expressions in which terms are combined with the operators AND, OR, and NOT
 - \(q = ta \ AND \ (tb \ AND \ NOT \ tc) \)

- Simple model based on set theory with precise semantics
 - The model views each document as just a set of words

vehicle OR car AND accident Search
Boolean Retrieval Function

The retrieval function can be defined recursively:

\[R(t_i, d_j) = \begin{cases} \text{TRUE}, & \text{if } w_{ij} = 1 \quad (i.e. \ t_i \text{ is in } d_j) \\ \text{FALSE}, & \text{if } w_{ij} = 0 \quad (i.e. \ t_i \text{ is not in } d_j) \end{cases} \]

\[R(q_1 \text{ AND } q_2, d_j) = R(q_1, d_j) \text{ AND } R(q_2, d_j) \]

\[R(q_1 \text{ OR } q_2, d_j) = R(q_1, d_j) \text{ OR } R(q_2, d_j) \]

\[R(\text{NOT } q, d_j) = \text{NOT } R(q, d_j) \]

The Boolean functions computes only values 0 or 1, i.e. Boolean retrieval classifies documents into two categories:

- relevant \((R = 1) \)
- irrelevant \((R = 0) \)

Example für Boolesches Retrieval

<table>
<thead>
<tr>
<th></th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
</tr>
</thead>
<tbody>
<tr>
<td>accident</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>cause</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>crowd</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>die</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>drive</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>four</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>heavy</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>injur</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>more</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>morning</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>people</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>quarter</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>register</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>truck</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>trucker</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>vehicle</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>vienna</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>yesterday</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Query:

\((\text{vehicle OR car AND accident} \) \)

\[R(\text{vehicle OR car AND accident}, d_1) = \text{TRUE} \]
\[R(\text{vehicle OR car AND accident}, d_2) = \text{FALSE} \]
\[R(\text{vehicle OR car AND accident}, d_3) = \text{FALSE} \]

Query:

\((\text{vehicle AND car OR accident} \) \)

\[R(\text{vehicle AND car OR accident}, d_1) = \text{TRUE} \]
\[R(\text{vehicle AND car OR accident}, d_2) = \text{TRUE} \]
\[R(\text{vehicle AND car OR accident}, d_3) = \text{TRUE} \]
Processing Boolean Queries

- Conjunctive queries are most widely used.
- Example: Processing simple conjunctive queries:

```
Example: car AND accident
```

- Query Optimization: For more than two terms in a conjunctive query, start with two shortest posting lists.

Drawbacks of the Boolean Model

- Retrieval based on binary decision criteria
 - No notion of partial matching
 - No ranking of the documents is provided (absence of a grading scale)
 - The query \(q = t_1 \text{ OR } t_2 \text{ OR } t_3 \) is satisfied by document containing one, two or three of the terms \(t_1, t_2, t_3 \)
- No weighting of terms, \(w_i \in \{0, 1\} \)
- Information need has to be translated into a Boolean expression which most users find awkward
- The Boolean queries formulated by the users are most often too simplistic
- As a consequence, the Boolean model frequently returns either too few or too many documents in response to a user query
2.2.2 Vector Space Model

Example:

<table>
<thead>
<tr>
<th>d1</th>
<th>d2</th>
</tr>
</thead>
<tbody>
<tr>
<td>accident</td>
<td>4</td>
</tr>
<tr>
<td>car</td>
<td>3</td>
</tr>
<tr>
<td>vehicle</td>
<td>1</td>
</tr>
</tbody>
</table>

Index can be regarded as an n-dimensional space
- $w_{ij} > 0$ whenever $t_i \in d_j$

Each term corresponds to a dimension
- To each term t_i is associated a unitary vector $\text{vec}(i)$
- The unitary vectors $\text{vec}(i)$ and $\text{vec}(j)$ are assumed to be orthonormal (i.e., index terms are assumed to occur independently within the documents)

Document can be regarded as
- vector started from (0,0,0)
- point in space

2.2.2.1 Coordinate Matching

- Documents and query are represented as
 - document vectors $\text{vec}(d_j) = (w_{1j}, w_{2j}, ..., w_{kj})$
 - query vector $\text{vec}(q) = (w_{1q}, ..., w_{kq})$
- Vectors have binary values
 - $w_{ij} = 1$ if term t_i occurs in Dokument d_j
 - $w_{ij} = 0$ else
- Ranking:
 - Return the documents containing at least one query term
 - rank by number of occurring query terms
- Ranking function: scalar product
 - $R(q,d) = q \cdot d = \sum_{i=1}^{n} q_i \cdot d_i$
Coordinate Matching: Example

<table>
<thead>
<tr>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>accident</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>cause</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>crowd</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>die</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>drive</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>four</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>heavy</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>injur</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>more</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>morning</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>people</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>quarter</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>register</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>truck</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>trucker</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>vehicle</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>vienna</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>yesterday</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Query vector represents terms of the query

![Search](image)

Resultat:

\[q \cdot d1 = \]
\[q \cdot d2 = \]
\[q \cdot d3 = \]

Assessment of Coordinate Matching

- Advantage compared to Boolean Model: Ranking
- Three main **drawbacks**
 - frequency of terms in documents in not considered
 - no weighting of terms
 - privilege for larger documents
2.2.2.2 Term Weighting

- Use of binary weights is too limiting
 - Non-binary weights provide consideration for partial matches
 - These term weights are used to compute a degree of similarity between a query and each document

- How to compute the weights \(w_{ij} \) and \(w_{iq} \)?

- A good weight must take into account two effects:
 - quantification of intra-document contents (similarity)
 - \(tf \) factor, the term frequency within a document
 - quantification of inter-documents separation (dissimilarity)
 - \(idf \) factor, the inverse document frequency

- \(w_{ij} = tf(i,j) \times idf(i) \)
 (Baeza-Yates & Ribeiro-Neto 1999)

TF - Term Frequency

<table>
<thead>
<tr>
<th></th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>accident</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cause</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>crowd</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>die</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>drive</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>four</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>heavy</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>injur</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>more</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>morning</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>people</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>quarter</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>register</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>truck</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>trucker</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>vehicle</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>vienna</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>yesterday</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Let \(freq(i,j) \) be the raw frequency of term \(t_i \) within document \(d_j \) (i.e. number of occurrences of term \(t_i \) in document \(d_j \))

- A simple tf factor can be computed as
 \[f(i,j) = freq(i,j) \]

- A normalized \(tf \) factor is given by
 \[f(i,j) = freq(i,j) / \max(freq(l,j)) \]
 where the maximum is computed over all terms which occur within the document \(d_j \)

For reasons of simplicity, in this example \(f(i,j) = freq(i,j) \)
(Baeza-Yates & Ribeiro-Neto 1999)
IDF – Inverse Document Frequency

- IDF can also be interpreted as the amount of information associated with the term \(t_i \). A term occurring in few documents is more useful as an index term than a term occurring in nearly every document.

- Let \(n_i \) be the number of documents containing term \(t_i \) (document frequency).
 - \(N \) be the total number of documents.

- A simple idf factor can be computed as
 \[
 \text{idf}(i) = \frac{1}{n_i}
 \]

- A normalized idf factor is given by
 \[
 \text{idf}(i) = \log \left(\frac{N}{n_i} \right)
 \]
 the log is used to make the values of tf and idf comparable.

Example with TF and IDF

- In this example a simple tf factor
 \[
 f(i,j) = \text{freq}(i,j)
 \]
 and a simple idf factor
 \[
 \text{idf}(i) = \frac{1}{n_i}
 \]
 are used.
Indexing a new Document

- Changes of the indexes when adding a new document d
 - a new document vector with tf factors for d is created
 - idf factors for terms occurring in d are adapted
- All other document vectors remain unchanged

Ranking

- Scalar product computes co-occurrences of term in document and query
 - Drawback: Scalar product privileges large documents over small ones
- Euclidian distance between endpoint of vectors
 - Drawback: euclidian distance privileges small documents over large ones
- Angle between vectors
 - the smaller the angle between query and document vector the more similar they are
 - the angle is independent of the size of the document
 - the cosine is a good measure of the angle
Cosine Ranking Formula

- the more the directions of query a and document d_j coincide the more relevant is d_j
- the cosine formula takes into account the ratio of the terms not their concrete number
- Let θ be the angle between q and d_j
- Because all values $w_{ij} \geq 0$ the angle θ is between 0° und 90°
 - the larger θ the less is $\cos \theta$
 - the less θ the larger is $\cos \theta$
 - $\cos 0 = 1$
 - $\cos 90^\circ = 0$

\[
\cos(q, d_j) = \frac{q \cdot d_j}{|q| \cdot |d_j|} = \frac{\sum_{i=1}^{t} w_{ij} \cdot w_{ij}}{\sqrt{\sum_{i=1}^{t} w_{ij}^2} \cdot \sqrt{\sum_{j=1}^{t} w_{ij}^2}}
\]

The Vector Model

- The best term-weighting schemes use weights which are given by
 - $w_{ij} = f(i,j) \cdot \log(N/n_i)$
 - the strategy is called a *tf-idf* weighting scheme
- For the query term weights, a suggestion is
 - $w_{iq} = (0.5 + [0.5 \cdot \text{freq}(i,q) / \max(\text{freq}(l,q))] \cdot \log(N/n_i))$

(Baeza-Yates & Ribeirp-Neto 1999)
The Vector Model

- The vector model with \textit{tf-idf} weights is a good ranking strategy with general collections.
- The vector model is usually as good as the known ranking alternatives. It is also simple and fast to compute.

Advantages:
- term-weighting improves quality of the answer set
- partial matching allows retrieval of docs that approximate the query conditions
- cosine ranking formula sorts documents according to degree of similarity to the query

Disadvantages:
- assumes independence of index terms (??); not clear that this is bad though

(Baeza-Yates & Ribeiro-Neto 1999)